分析 (1)求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值,求出函數(shù)的值域即可;
(2)求函數(shù)的定義域,利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求出函數(shù)的單調(diào)區(qū)間;
(3)問題轉(zhuǎn)化為h(x)=2ax2+1在(1,2)有解,根據(jù)二次函數(shù)的性質(zhì)求出a的范圍即可.
解答 解:(1)當(dāng)a=-$\frac{1}{2}$時(shí),f(x)=-$\frac{1}{2}$x2+lnx,(x>0),
f′(x)=-x+$\frac{1}{x}$=$\frac{1{-x}^{2}}{x}$,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
∴f(x)在[$\frac{1}{e}$,1)遞增,在(1,e]遞減,
而f($\frac{1}{e}$)=-1-$\frac{1}{{2e}^{2}}$,f(1)=-$\frac{1}{2}$,f(e)=1-$\frac{1}{2}$e2<f($\frac{1}{e}$),
故函數(shù)的值域是[1-$\frac{1}{2}$e2,-$\frac{1}{2}$].
(2)要使函數(shù)有意義,則x>0,
函數(shù)的導(dǎo)數(shù)f′(x)=$\frac{1}{x}$+2ax=$\frac{2{ax}^{2}+1}{x}$,
若a≥0,則f'(x)>0,此時(shí)函數(shù)單調(diào)遞增,即增區(qū)間為(0,+∞).
若a<0,由f′(x)>0得x>$\frac{1}{\sqrt{-2a}}$,
由f′(x)<0得0<x<$\frac{1}{\sqrt{-2a}}$,即此時(shí)函數(shù)的減區(qū)間為(0,$\frac{1}{\sqrt{-2a}}$),增區(qū)間為($\frac{1}{\sqrt{-2a}}$,+∞),
綜上:若a≥0,函數(shù)的增區(qū)間為(0,+∞).
若a<0,函數(shù)的減區(qū)間為(0,$\frac{1}{\sqrt{-2a}}$),增區(qū)間為($\frac{1}{\sqrt{-2a}}$,+∞).
(3)f′(x)=$\frac{1}{x}$+2ax=$\frac{2{ax}^{2}+1}{x}$,(x>0),
若函數(shù)f(x)在區(qū)間(1,2)上不單調(diào),
則h(x)=2ax2+1在(1,2)有解,
∴$\left\{\begin{array}{l}{a<0}\\{1<\sqrt{-\frac{1}{2a}}<2}\end{array}\right.$,解得:-$\frac{1}{2}$<a<-$\frac{1}{8}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用、分類討論思想有解二次函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩個(gè)點(diǎn) | B. | 一個(gè)橢圓 | C. | 一條線段 | D. | 兩條直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | $\frac{{4\sqrt{5}}}{3}$ | D. | $\frac{{4\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若ac2>bc2,則a>b | B. | 若a<b<0,則a2<b2 | ||
C. | 若a>b>0,則$\frac{1}{a}$<$\frac{1}$ | D. | 若a<b<0,c>d>0,則ac<bd |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com