【題目】如圖所示,底面為菱形, , , 平面.

(1)設交于點,求證: 平面;

(2)求多面體的體積.

【答案】(1)見解析;(2) .

【解析】試題分析:1的中點,連接,易證得四邊形為平行四邊形,所以,即可證得;

(2)過點,分別交^ 于點,連接, .的中點,連接,交于點.由題意知,四邊形為平行四邊形,結合平面 平面,由體積公式求解即可.

試題解析:

1的中點,連接.由題意知, 中點,∴

,則四邊形為平行四邊形,

,平面.

2過點,分別交^ 于點,連接, .的中點,連接,交于點.由題意知,四邊形為平行四邊形.

為菱形, ,

為等邊三角形,

.

為等邊三角形, 的中點,

平面, ,平面,

.

平面, ,平面,

,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從某校隨機抽取100名學生,獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

1)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12小時的概率;

2)求頻率分布直方圖中的a,b的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高一實驗班的數(shù)學成績,采用抽樣調查的方式,獲取了位學生在第一學期末的數(shù)學成績數(shù)據(jù),樣本統(tǒng)計結果如下表:

分組

頻數(shù)

頻率

合計

(1)求的值和實驗班數(shù)學平均分的估計值;

(2)如果用分層抽樣的方法從數(shù)學成績小于分的學生中抽取名學生,再從這名學生中選人,求至少有一個學生的數(shù)學成績是在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓上異于AB的點,PO垂直于圓O所在的平面,且POOBBC2,點E在線段PB上,則CE+OE的最小值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面ABCD是菱形,∠BAD60°,ABPA2,PA⊥平面ABCDEPC的中點,FAB的中點.

1)求證:BE∥平面PDF

2)求證:平面PDF⊥平面PAB;

3)求BE與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,直線的極坐標方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)若曲線為曲線關于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某動物園要為剛入園的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

(1)若,求的周長(結果精確到0.01米);

(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積,的面積盡可能大,當為何值時,該活動室面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若處取得極值,求實數(shù)的值.

(2)求函數(shù)的單調區(qū)間.

(3)若上沒有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角中,, _______,求的周長的取值范圍.

,,且;

,.

注:這三個條件中選一個,補充在上面的問題中并對其進行求解,如果選擇多個條件分別解答,按第一個解答計分.

查看答案和解析>>

同步練習冊答案