14.已知f(x)是偶函數(shù),若當(dāng)x>0時(shí),f(x)=ex+lnx,則當(dāng)x<0時(shí),f(x)=( 。
A.ex+lnxB.e-x+ln(-x)C.e-x+lnxD.-ex+ln(-x)

分析 由x>0時(shí)f(x)的解析式,設(shè)x<0,則-x>0,得f(-x)的解析式,又f(x)是偶函數(shù),得出x<0時(shí)f(x)的解析式.

解答 解;當(dāng)x<0時(shí),-x>0,
∵當(dāng)x>0時(shí),f(x)=ex+lnx,
∴f(-x)=e-x+ln(-x),
因?yàn)閒(x)是為偶函數(shù),
所以f(-x)=f(x),
所以f(x)=e-x+ln(-x);
即x<0,f(x)=e-x+ln(-x);
故選:B

點(diǎn)評(píng) 本題利用函數(shù)的奇偶性考查了求函數(shù)解析式的知識(shí),是教材中的基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,用一塊矩形木板緊貼一墻角圍成一個(gè)直三棱柱空間堆放谷物.已知木板的長(zhǎng)BC緊貼地面且為4米,寬BE為2米,墻角的兩堵墻面所成二面角為120°,且均與地面垂直,如何放置木板才能使這個(gè)空間的體積最大,最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.從4種蔬菜品種中選出3種,分別種植在不同土質(zhì)的3塊土地上,不同的種植方法共有( 。
A.12種B.24種C.36種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.函數(shù)y=$\sqrt{3-4x+{x}^{2}}$的定義域?yàn)镸.
(1)求M和函數(shù)的值域;
(2)當(dāng)x∈M時(shí),關(guān)于x的方程4x-2×2x=b(b∈R)有兩個(gè)不等實(shí)數(shù)根,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在復(fù)平面內(nèi),復(fù)數(shù)-5-2i對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程x=f(x)有兩個(gè)相等的實(shí)數(shù)根.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)x∈[0,3]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列說(shuō)法正確的是( 。
A.函數(shù)y=x+$\frac{2}{x}$的最小值為2$\sqrt{2}$
B.函數(shù)y=sinx+$\frac{2}{sinx}$(0<x<π)的最小值為2$\sqrt{2}$
C.函數(shù)y=|x|+$\frac{2}{|x|}$的最小值為2$\sqrt{2}$
D.函數(shù)y=lgx+$\frac{2}{lgx}$的最小值為2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.方程x|x|-y|y|=-1的曲線即為函數(shù)y=f(x)的圖象,對(duì)于函數(shù)y=f(x),有如下結(jié)論:
①f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=f(x)-x-$\sqrt{2}$存在3個(gè)零點(diǎn);
③函數(shù)y=f(x)的值域是R;
④函數(shù)g(x)和f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)y=g(x)的圖象就是方程x|x|-y|y|=1確定的曲線.
其中所有正確的命題序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a4=4,S5=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=a1,b4=a27,Tn為數(shù)列{bn}的前n項(xiàng)和,且Tn=40.求n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案