分析 先對a>1以及0<a<1分別求出其最大值和最小值,發(fā)現(xiàn)最大值與最小值之和都是f(1)+f(2);再結(jié)合最大值與最小值之和為(loga2)+6,即可求a的值.
解答 解:因為函數(shù)f(x)=a2+logax(a>0且a≠1),
所以函數(shù)f(x)在a>1時遞增,最大值為f(2)=a2+loga2;最小值為f(1)=a2+loga1,
函數(shù)f(x)在0<a<1時遞減,最大值為f(1)=a2+loga1,最小值為f(2)=a2+loga2;
故最大值和最小值的和為:f(1)+f(2)=a2+loga2+a2+loga1=loga2+6.
∴a2=3,a>0且a≠1,
可得a=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點評 本題主要考查對數(shù)函數(shù)的值域問題.解決對數(shù)函數(shù)的題目時,一定要討論其底數(shù)和1的大小關(guān)系,避免出錯.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)-f(-x)≥0 | B. | f(x)-f(-x)≤0 | C. | f(x)•f(-x)≤0 | D. | f(x)•f(-x)≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com