18.函數(shù)f(x)=lg(x+1)+$\sqrt{3-x}$的定義域?yàn)椋ā 。?table class="qanwser">A.[1,3]B.[-1,3]C.(1,3]D.(-1,3]

分析 根據(jù)對數(shù)函數(shù)的性質(zhì)以及二次根式的性質(zhì)求出函數(shù)的定義域即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{x+1>0}\\{3-x≥0}\end{array}\right.$,解得:-1<x≤3,
故函數(shù)的定義域是(-1,3],
故選:D.

點(diǎn)評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)的性質(zhì)以及二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某大廈的一部電梯從底層出發(fā)后只能在第18,19,20層?浚粼撾娞菰诘讓虞d有5位乘客,且每位乘客在這三層的每一層下電梯的概率均為$\frac{1}{3}$,用ξ表示這5位乘客在第20層下電梯的人數(shù),則P(ξ=4)=$\frac{10}{243}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在三棱錐A-BCD中,E是BC的中點(diǎn),AB=AD,BD⊥DC,DB=2DC=$\sqrt{2}$AB=2,且二面角A-BD-C為60°.
(Ⅰ)求證:AE⊥BD;
(Ⅱ)求直線AE與平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.實(shí)數(shù)m取什么值時,復(fù)數(shù)lg(m2-2m-2)+(m2+3m+2)i分別是
(1)純虛數(shù);    
(2)實(shí)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\sqrt{-x}}&{(x<0)}\\{{{(x-\frac{1}{2})}^4}}&{(x>0)}\end{array}}$,則f(f(-1))=( 。
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=sinωx在[-$\frac{π}{3}$,$\frac{π}{3}}$]上為增函數(shù),則ω的取值范圍( 。
A.(0,3]B.(0,$\frac{3}{2}}$]C.[-3,0)D.[-$\frac{3}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$2\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為150°,則|2$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.△ABC中,a,b,c分別是角A,B,C的對邊,若△ABC為銳角三角形,且B=$\frac{π}{3}$,c=2,則邊b的取值范圍是( 。
A.($\sqrt{3}$,3)B.($\sqrt{3}$,2$\sqrt{3}}$)C.(3,2$\sqrt{3}}$)D.($\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,短軸長為2.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若P為橢圓C上任意一點(diǎn),以P為圓心,OP為半徑的圓P與以橢圓C的右焦點(diǎn)E為圓心,其中O為坐標(biāo)原點(diǎn),以$\sqrt{5}$為半徑的圓F相交于A,B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案