16.以下命題正確的是①③④.
①函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個單位,可得到y(tǒng)=3sin2x的圖象;
②函數(shù)f(x)=x+$\frac{a}{x}$(x>0)的最小值為2$\sqrt{a}$;
③某校開設(shè)A類選修課3門,B類選擇課4門,一位同學(xué)從中共選3門,若要求兩類課程中各至少選一門,則不同的選法共有30種;
④在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(2,σ2)(σ>0).若ξ在(-∞,1)內(nèi)取值的概率為0.1,則ξ在(2,3)內(nèi)取值的概率為0.4.

分析 ①根據(jù)三角函數(shù)的圖象平移關(guān)系進(jìn)行判斷,
②根據(jù)函數(shù)單調(diào)性和最值的關(guān)系進(jìn)行判斷,
③根據(jù)排列組合的公式進(jìn)行求解判斷,
④根據(jù)正態(tài)分布的性質(zhì)進(jìn)行求解判斷.

解答 解:①函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個單位,得到y(tǒng)=3sinx[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=3sin2x,故①正確,
②當(dāng)a<0時,函數(shù)f(x)=x+$\frac{a}{x}$(x>0)為增函數(shù),此時沒有最小值,故②錯誤;
③某校開設(shè)A類選修課3門,B類選擇課4門,一位同學(xué)從中共選3門,
若要求兩類課程中各至少選一門,則不同的選法共有${C}_{3}^{1}{C}_{4}^{2}+{C}_{3}^{2}{C}_{4}^{1}$=18+12=30種;故③正確,
④在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(2,σ2)(σ>0).若ξ在(-∞,1)內(nèi)取值的概率為0.1,
則ξ在(1,2)的概率為0.5-0.1=0.4,則ξ在(2,3)內(nèi)取值的概率和ξ在(1,2)的概率相同,都為0.4,故④正確,
故答案為:①③④

點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強(qiáng),但難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若某流程圖如圖所示,則該程序運(yùn)行后輸出的結(jié)果是$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=a-$\frac{1}{{{2^x}+1}}$是定義在(-1,1)上的奇函數(shù).
(1)求a的值;
(2)試判斷函數(shù)f(x)在(-1,1)上的單調(diào)性并證明;
(3)若f(x-1)+f(x)<0,求x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在Rt△ABC中,∠C=90°,BC=2,D是BC的中點,則($\overrightarrow{AB}$-$\overrightarrow{AC}$)•$\overrightarrow{AD}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a<0,b<0)的右焦點為F,右頂點為A,過F作AF的垂線與雙線交于B,C兩點,過B,C分別作AC,AB的垂線交于D,若D到直線BC的距離不大于a+c,則該雙曲線的離心率的取值范圍是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知tanα=3,則$\frac{sinα+2cosα}{sinα-2cosα}$的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若k≠0,n是大于1的自然數(shù),二項式(1+$\frac{x}{k}$)n的展開式為a0+a1x+a2x2+a3x3+a4x4…+anxn.若點Ai(i,ai)(i=0,1,2)的位置如圖所示,則${∫}_{-1}^{k}$x2dx的值為( 。
A.$\frac{28}{3}$B.$\frac{26}{3}$C.28D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{2π}{3}$$\frac{8π}{3}$
Asin(ωx+φ)03-30
(1)請將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為($\frac{5π}{12}$,0),求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.運(yùn)行如圖語句,則輸出的結(jié)果T=25.

查看答案和解析>>

同步練習(xí)冊答案