11.設雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a<0,b<0)的右焦點為F,右頂點為A,過F作AF的垂線與雙線交于B,C兩點,過B,C分別作AC,AB的垂線交于D,若D到直線BC的距離不大于a+c,則該雙曲線的離心率的取值范圍是(1,$\sqrt{2}$].

分析 由雙曲線的對稱性知D在x軸上,設D(x,0),則由BD⊥AB得$\frac{\frac{^{2}}{a}}{c-x}•\frac{\frac{^{2}}{a}}{c-a}$=-1,求出c-x,利用D到直線BC的距離不大于a+c,即可得出結論.

解答 解:由題意,A(a,0),B(c,$\frac{^{2}}{a}$),C(c,-$\frac{^{2}}{a}$),由雙曲線的對稱性知D在x軸上,
設D(x,0),則由BD⊥AC得-$\frac{\frac{^{2}}{a}}{c-x}•\frac{\frac{^{2}}{a}}{c-a}$=-1,
∴c-x=-$\frac{^{4}}{{a}^{2}(a-c)}$,
∵D到直線BC的距離不大于a+c,
∴c-x=|-$\frac{^{4}}{{a}^{2}(a-c)}$|≤a+c,
∴$\frac{^{4}}{{a}^{2}}$≤c2-a2=b2
∴0<$\frac{a}$≤1,
∵e=$\sqrt{1+(\frac{a})^{2}}$,
∴1<e≤$\sqrt{2}$
∴雙曲線的離心率的取值范圍是(1,$\sqrt{2}$].
故答案為:(1,$\sqrt{2}$]

點評 本題主要考查雙曲線離心率的計算,根據(jù)條件求出交點D的坐標是解決本題的關鍵.考查學生的計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.2010年上海世博會舉辦時間為2010年5月1日--10月31日.此次世博會福建館招募了60名志愿者,某高校有13人入選,其中5人為中英文講解員,8人為迎賓禮儀,它們來自該校的5所學院(這5所學院編號為1、2、3、4、5號),人員分布如圖所示. 若從這13名入選者中隨機抽出3人.
(1)求這3人所在學院的編號正好成等比數(shù)列的概率;
(2)求這3人中中英文講解員人數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.給出下列命題:
①命題:“?x∈R,x2+x+1>0”的否定是“?x0∈R,x${\;}_{0}^{2}$+x0+1<0”;
②設回歸直線方程$\widehat{y}$=2-3x,當變量x增加一個單位時,$\widehat{y}$平均增加3個單位;
③已知sin(θ-$\frac{π}{6}$)=$\frac{1}{3}$,則cos($\frac{π}{3}$-2θ)=$\frac{7}{9}$;
④cosα=cosβ成立的一個充分不必要條件是α=2kπ+β(k∈Z).
其中正確命題的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.雙曲線C:x2-$\frac{{y}^{2}}{3}$=1的頂點到漸近線的距離與焦點到漸近線的距離之比為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設F1、F2分別是雙曲線C:$\frac{x^2}{4}$-$\frac{y^2}{5}$=1的左右焦點,點P在雙曲線C的右支上,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=0,則|$\overrightarrow{P{F_1}}$+$\overrightarrow{P{F_2}|}$=( 。
A.4B.6C.$2\sqrt{14}$D.$4\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.以下命題正確的是①③④.
①函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個單位,可得到y(tǒng)=3sin2x的圖象;
②函數(shù)f(x)=x+$\frac{a}{x}$(x>0)的最小值為2$\sqrt{a}$;
③某校開設A類選修課3門,B類選擇課4門,一位同學從中共選3門,若要求兩類課程中各至少選一門,則不同的選法共有30種;
④在某項測量中,測量結果ξ服從正態(tài)分布N(2,σ2)(σ>0).若ξ在(-∞,1)內(nèi)取值的概率為0.1,則ξ在(2,3)內(nèi)取值的概率為0.4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知cos($\frac{π}{2}$+x)=$\frac{4}{5}$,x∈(-$\frac{π}{2}$,0),求$\frac{{sin2x-2{{sin}^2}x}}{1+tanx}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求曲線y=lnx在點M(e,1)處的切線的斜率和切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖給出了一個程序框圖,其作用是輸入x的值,輸出相應的y值,若要使輸入的x值與輸出的y值相等,則這樣的x值組成的集合為{0,1,3}.

查看答案和解析>>

同步練習冊答案