A. | $\left\{\begin{array}{l}{x′=\frac{2}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{2}x}\\{y′=\sqrt{2}y}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x}\\{y′=\frac{\sqrt{10}}{5}y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$ |
分析 令$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$代入,化簡代入橢圓方程化簡整理即可得出.
解答 解:由圓x2+y2=4化為$(\frac{x}{2})^{2}+(\frac{y}{2})^{2}$=1,
令$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$代入橢圓方程可得$\frac{({x}^{′})^{2}}{4}+\frac{({y}^{′})^{2}}{4}$=1,即(x′)2+(y′)2=4,
由$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}{x}^{′}}\\{y=\sqrt{2}{y}^{′}}\end{array}\right.$化為$\left\{\begin{array}{l}{{x}^{′}=\frac{\sqrt{10}}{5}x}\\{{y}^{′}=\frac{\sqrt{2}}{2}y}\end{array}\right.$.
故選:D.
點(diǎn)評(píng) 本題考查了橢圓化為圓的變換公式,考查了計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22 | B. | 21 | C. | 20 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0” | |
B. | 對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬p為:?x∈R,均有x2+x+1≥0 | |
C. | 若p∧q為假命題,則p,q均為假命題 | |
D. | “x>2”是“x2-3x+2>0”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com