16.命題p:函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x<0}\\{ln(x+1),x≥0}\end{array}\right.$且|f(x)|≥ax.q:函數(shù)g(x)為定義在R上的奇函數(shù),當x≥0時,g(x)=$\frac{1}{2}$(|x-a2|+|x-2a2|-3a2),且?x∈R,f(x-1)≤f(x)恒成立.
(1)若p且q為真命題,求a的取值范圍;
(2)若p或q為真命題,求a的取值范圍.

分析 分別求出命題p,q為真時,a的取值范圍,
(1)若p且q為真命題,則兩個取值范圍的交集即為答案;
(2)若p或q為真命題,則兩個取值范圍的并集即為答案;

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x<0}\\{ln(x+1),x≥0}\end{array}\right.$,
∴y=|f(x)|=$\left\{\begin{array}{l}{x}^{2}-2x,x<0\\ ln(x+1),x≥0\end{array}\right.$,
∴y′=$\left\{\begin{array}{l}2x-2,x<0\\ \frac{1}{x+1},x≥0\end{array}\right.$,
由y=|f(x)|和y=ax的圖象均過原點,
故命題p為真,即|f(x)|≥ax恒成立時,
僅須y′|x=0=-2≤a≤0,
即a∈[-2,0],
∵當x≥0時,f(x)=$\frac{1}{2}$(|x-a2|+|x-2a2|-3a2).
∴當0≤x≤a2時,f(x)=$\frac{1}{2}$(a2-x+2a2-x-3a2)=-x;
當a2<x≤2a2時,f(x)=-a2;
當x>2a2時,f(x)=x-3a2
畫出其圖象.

由于函數(shù)f(x)是定義在R上的奇函數(shù),即可畫出x<0時的圖象,
與x>0時的圖象關(guān)于原點對稱.
若命題q為真,即?x∈R,f(x-1)≤f(x),
即6a2≤1,
解得:a∈[-$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$].
(1)若p且q為真命題,則a∈[-$\frac{\sqrt{6}}{6}$,0];
(2)若p或q為真命題,則∈[-2,$\frac{\sqrt{6}}{6}$].

點評 本題考查的知識點是命題的真假判斷與應(yīng)用,復(fù)合命題的真假,恒成立問題,難度較大,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.中石化集團通過與安哥拉國家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權(quán),集團在某些區(qū)塊隨機初步勘探了部分口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡(luò)點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:
井號I123456
坐標(x,y)(km)(2,30)(4,30)(5,60)(6,50)(8,70)(1,y)
鉆井深度(km)2456810
出油量(L)407011090160205
(I)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預(yù)報值;
(II)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的$\stackrel{∧}$,$\stackrel{∧}{a}$的值與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?
($\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\sum_{i=1}^{4}$x2i-12=94,$\sum_{i=1}^{4}$x2i-1y2i-1=945)
(III)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知$\overrightarrow a$=(-2,1),$\overrightarrow b$=(1,λ),若$\overrightarrow a$∥$\overrightarrow b$,則λ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在平面直角坐標系xOy中,圓C1:x2+y2-4x-8y+19=0關(guān)于直線l:x+2y-a=0對稱,則實數(shù)a=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.函數(shù)f(x)=-x2+(3-2m)x+2+m(0<m≤1).
(Ⅰ)若x∈[0,m],證明:f(x)≤$\frac{10}{3}$;
(Ⅱ)求|f(x)|在[-1,1]上的最大值g(m).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1具有相同的(  )
A.短軸長B.長軸長C.離心率D.對稱軸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點分別為F1、F2,離心率$e=\frac{{\sqrt{2}}}{2}$,P為橢圓E上的任意一點(不含長軸端點),且△PF1F2面積的最大值為1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知直x-y+m=0與橢圓E交于不同的兩點A,B,且線AB的中點不在圓${x^2}+{y^2}=\frac{5}{9}$內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≥0\\ x≤5\end{array}\right.$,則$\frac{y}{x}$的最小值為-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.拋物線x2=2py(p>0)的準線方程為y=-$\frac{1}{2}$,則拋物線方程為x2=2y.

查看答案和解析>>

同步練習冊答案