6.拋物線x2=2py(p>0)的準線方程為y=-$\frac{1}{2}$,則拋物線方程為x2=2y.

分析 根據(jù)拋物線x2=2py(p>0)的準線方程為y=-$\frac{1}{2}$,可知p的值,即可得出拋物線的方程.

解答 解:∵拋物線x2=2py(p>0)的準線方程為y=-$\frac{1}{2}$,
∴-$\frac{p}{2}$=-$\frac{1}{2}$,
∴p=1,
∴拋物線方程為x2=2y.
故答案為:x2=2y.

點評 本題主要考查了拋物線的簡單性質和拋物線的標準方程的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.命題p:函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x<0}\\{ln(x+1),x≥0}\end{array}\right.$且|f(x)|≥ax.q:函數(shù)g(x)為定義在R上的奇函數(shù),當x≥0時,g(x)=$\frac{1}{2}$(|x-a2|+|x-2a2|-3a2),且?x∈R,f(x-1)≤f(x)恒成立.
(1)若p且q為真命題,求a的取值范圍;
(2)若p或q為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.執(zhí)行如圖所示的流程圖,則輸出的M應為2 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知f(x)=ax5+bx3+$\frac{c}{x}$+3(a,b,c是實常數(shù)),且f(3)=2,則f(-3)的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.定義在R上的函數(shù) y=f(x) 對任意的x,y∈R,滿足條件:f(x+y)=f(x)+f(y)-2,且當x>0時,f(x)>2
(1)求f(0)的值;
(2)證明:函數(shù)f(x)是R上的單調增函數(shù);
(3)解不等式f(2t2-t-3)-2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=x+asinx在(-∞,+∞)上單調遞增,則實數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F,過點F的直線交y軸于點N,交橢圓C于點A、P(P在第一象限),過點P作y軸的垂線交橢圓C于另外一點Q.若$\overrightarrow{NF}=2\overrightarrow{FP}$.
(1)設直線PF、QF的斜率分別為k、k',求證:$\frac{k}{k'}$為定值;
(2)若$\overrightarrow{AN}=\overrightarrow{FP}$且△APQ的面積為$\frac{{12\sqrt{15}}}{5}$,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對于直線m,n和平面α,以下結論正確的是(  )
A.如果m?α,n?α,m、n是異面直線,那么n∥α
B.如果m?α,n與α相交,那么m、n是異面直線
C.如果m?α,n∥α,m、n共面,那么m∥n
D.如果m∥α,n∥α,m、n共面,那么m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知實數(shù)a,b滿足等式2a=5b,給出下列五個關系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中,可能成立的關系式有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案