A. | (-1,2,3) | B. | (-1,-2,3) | C. | (1,2,-3) | D. | (1,-2,-3) |
分析 直接根據(jù)關(guān)于誰對稱誰不變這一結(jié)論直接寫結(jié)論即可.
解答 解:空間直角坐標(biāo)系中任一點P(a,b,c)關(guān)于坐標(biāo)平面xOy的對稱點為P1(a,b,-c);由題意可得:點P(1,2,3)關(guān)于xoy平面的對稱點的坐標(biāo)是(1,2,-3).
故選:C.
點評 本題考查空間向量的坐標(biāo)的概念,向量的坐標(biāo)表示,空間點的對稱點的坐標(biāo)的求法,記住某些結(jié)論性的東西將有利于解題.空間直角坐標(biāo)系中任一點P(a,b,c)關(guān)于坐標(biāo)平面xOy的對稱點為P4(a,b,-c);關(guān)于坐標(biāo)平面yOz的對稱點為P5(-a,b,c);關(guān)于坐標(biāo)平面xOz的對稱點為P6(a,-b,c).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?$x>0,\;\;x+\frac{1}{x}$<2 | B. | ?$x≤0,\;\;x+\frac{1}{x}$<2 | C. | ?$x≤0,\;\;x+\frac{1}{x}$<2 | D. | ?$x>0,\;\;x+\frac{1}{x}$<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{3}{4}$ | C. | -$\frac{3}{2}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com