13.在平面直角坐標(biāo)系xOy中,已知斜率為-1的直線l與橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點(diǎn),且AB的中點(diǎn)為M(2,1)
(1)求橢圓的離心率;
(2)設(shè)橢圓的右焦點(diǎn)為F,且AF•BF=5,求橢圓的方程.

分析 (1)將直線l的方程代入橢圓方程,利用韋達(dá)定理及中點(diǎn)坐標(biāo)公式,即可求得a和b的關(guān)系,根據(jù)橢圓的離心率公式,即可求得橢圓方程;
(2)利用橢圓的第二定義,求得丨AF丨及丨BF丨,利用韋達(dá)定理即可求得b的值,即可求得橢圓方程.

解答 解:(1)由題意可知,l的方程為y=-x+3…(2分)
代入$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,得(b2+a2)x2-6a2x+9a2-a2b2=0,
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=$\frac{{6{a^2}}}{{{b^2}+{a^2}}}$,x1x2=$\frac{{9{a^2}-{a^2}{b^2}}}{{{b^2}+{a^2}}}$,①…(5分)
由AB中點(diǎn)為M(2,1)故$\frac{{6{a^2}}}{{{b^2}+{a^2}}}$=4,即a2=2b2,故$e=\sqrt{1-\frac{b^2}{a^2}}=\frac{{\sqrt{2}}}{2}$,②
橢圓的離心率e=$\frac{\sqrt{2}}{2}$;…(8分)
(2)由①②知橢圓方程為:$\frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1$,x1+x2=4,x1x2=$6-\frac{2}{3}{b^2}$,
$\frac{丨AF丨}{\frac{{a}^{2}}{c}-{x}_{1}}$=e,則丨AF丨=a-ex1,同理丨BF丨=a-ex2,…(10分)
丨AF丨•丨BF丨=5,則(a-ex1)(a-ex2)=a2-ae(x1+x2)+e2x1+x2
=$\frac{5}{3}$b2-4b+3=5,即,5b2-12b-6=0,解得:b=3,b=-$\frac{2}{5}$,…(14分)
則a2=2b2=18,
因此橢圓方程為:$\frac{x^2}{18}+\frac{y^2}{9}=1$ …(16分)

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查韋達(dá)定理,中點(diǎn)坐標(biāo)公式及橢圓第二定義,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.隨機(jī)變量X的概率分布規(guī)律為P(X=n)=$\frac{a}{n(n+1)}$(n=1,2,3,4,…,10),中a是常數(shù),則P($\frac{1}{2}$<X<$\frac{5}{2}$)的值為( 。
A.$\frac{7}{15}$B.$\frac{3}{5}$C.$\frac{11}{15}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$tan(α-β)=\frac{1}{2}$,$tanβ=-\frac{1}{7}$,則tanα等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.二次函數(shù)y=x2-2x-2的單調(diào)減區(qū)間是( 。
A.(1,+∞)B.(-∞,1)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.正方體ABCD-A1B1C1D1的棱長(zhǎng)為a.E為棱AA1的中點(diǎn),
(1)求三棱錐E-BCD1與三棱錐A-CDB1的體積比為.
(2)求三棱錐B-A1C1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè){an}是各項(xiàng)均不相等的數(shù)列,Sn為它的前n項(xiàng)和,滿足λnan+1=Sn+1(n∈N+,λ∈R).
(1)若a1=1,且a1,a2,a3成等差數(shù)列,求λ的值;
(2)若{an}的各項(xiàng)均不相等,問當(dāng)且僅當(dāng)λ為何值時(shí),a2,a3,…,an,…成等差數(shù)列?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知過點(diǎn)P(-1,0)的直線l與拋物線y2=4x相交于A(x1,y1)、B(x2,y2)兩點(diǎn).
(Ⅰ)求直線l傾斜角的取值范圍;
(Ⅱ)是否存在直線l,使A、B兩點(diǎn)都在以M(5,0)為圓心的圓上,若存在,求出此時(shí)直線及圓的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.正方形ABCD邊長(zhǎng)為2,中心為O,直線l經(jīng)過中心O,交AB于M,交CD于N,P為平面上一點(diǎn),且$2\overrightarrow{OP}=λ\overrightarrow{OB}+(1-λ)\overrightarrow{OC}$,則$\overrightarrow{PM}•\overrightarrow{PN}$的最小值是( 。
A.$-\frac{3}{4}$B.-1C.$-\frac{7}{4}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點(diǎn)(-4,0)是橢圓kx2+3ky2=1的一個(gè)焦點(diǎn),則k=$\frac{1}{24}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案