2.正方形ABCD邊長為2,中心為O,直線l經(jīng)過中心O,交AB于M,交CD于N,P為平面上一點(diǎn),且$2\overrightarrow{OP}=λ\overrightarrow{OB}+(1-λ)\overrightarrow{OC}$,則$\overrightarrow{PM}•\overrightarrow{PN}$的最小值是( 。
A.$-\frac{3}{4}$B.-1C.$-\frac{7}{4}$D.-2

分析 根據(jù)$2\overrightarrow{OP}=λ\overrightarrow{OB}+(1-λ)\overrightarrow{OC}$得出2$\overrightarrow{OP}$的終點(diǎn)在線段BC上,即|2$\overrightarrow{OP}$|≥1,求出${\overrightarrow{OP}}^{2}$≥$\frac{1}{4}$;又O是MN的中點(diǎn),得出$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,$\overrightarrow{OM}$•$\overrightarrow{ON}$≥$\sqrt{2}$×$\sqrt{2}$×cosπ,求$\overrightarrow{PM}•\overrightarrow{PN}$=($\overrightarrow{OM}$-$\overrightarrow{OP}$)•($\overrightarrow{ON}$-$\overrightarrow{OP}$)的最小值即可.

解答 解:根據(jù)題意,$2\overrightarrow{OP}=λ\overrightarrow{OB}+(1-λ)\overrightarrow{OC}$,

∴2$\overrightarrow{OP}$的終點(diǎn)在線段BC上,
∴|2$\overrightarrow{OP}$|≥1,
∴|$\overrightarrow{OP}$|≥$\frac{1}{2}$,
∴${\overrightarrow{OP}}^{2}$≥$\frac{1}{4}$;
又O是MN的中點(diǎn),
∴$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$≥$\sqrt{2}$×$\sqrt{2}$×cosπ=-2,
∴$\overrightarrow{PM}•\overrightarrow{PN}$=($\overrightarrow{OM}$-$\overrightarrow{OP}$)•($\overrightarrow{ON}$-$\overrightarrow{OP}$)
=$\overrightarrow{OM}$•$\overrightarrow{ON}$-$\overrightarrow{OP}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)+${\overrightarrow{OP}}^{2}$≥-2-0+$\frac{1}{4}$=-$\frac{7}{4}$,
∴$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值是-$\frac{7}{4}$.
故選:C.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算性質(zhì)、向量的三角形法則、向量共線定理應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.現(xiàn)有10道題,期中6道難題,4道簡單題,張同學(xué)從中任選3道題解答.已知所取3道題中有2道難題,1道簡單題.設(shè)張同學(xué)答對每道難題的概率都是$\frac{2}{5}$,答對每道簡單題的概率都是$\frac{4}{5}$,且各題答對與否相互獨(dú)立,用X表示張同學(xué)答對題的個數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,已知斜率為-1的直線l與橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點(diǎn),且AB的中點(diǎn)為M(2,1)
(1)求橢圓的離心率;
(2)設(shè)橢圓的右焦點(diǎn)為F,且AF•BF=5,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平行四邊形ABCD中,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AB}$=$\overrightarrow b$,M為AB中點(diǎn),N為BD靠近B的三等分點(diǎn).
(1)用基底$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{MC}$,$\overrightarrow{NC}$;
(2)求證:M、N、C三點(diǎn)共線.并證明:CM=3MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.公共汽車上有4位乘客,其中任意兩人都不在同一車站下車,汽車沿途?6個車站,那這4位乘客不同的下車方式共有360種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a4=8,a6=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Sn=20,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=logax(a>0,a≠1).
(1)當(dāng)a=2時,求關(guān)于實(shí)數(shù)m的不等式f(3m-2)<f(2m+5)的解集.
(2)求使$f(x-\frac{2}{x})={log_a}\frac{7}{2}$成立的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.隨著手機(jī)使用的不斷普及,現(xiàn)在全國各地的中小學(xué)生攜帶手機(jī)進(jìn)入校園已經(jīng)成為了普遍的現(xiàn)象,也引起了一系列的問題.然而,是堵還是疏,就擺在了我們學(xué)校老師的面前.某研究型學(xué)習(xí)小組調(diào)查研究“中學(xué)生使用手機(jī)對學(xué)習(xí)的影響”,部分統(tǒng)計(jì)數(shù)據(jù)如下表:
不使用手機(jī)使用手機(jī)合計(jì)
學(xué)習(xí)成績優(yōu)秀人數(shù)18725
學(xué)習(xí)成績不優(yōu)秀人數(shù)61925
合計(jì)242650
參考數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(1)試根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生使用手機(jī)對學(xué)習(xí)有影響?
(2)研究小組將該樣本中使用手機(jī)且成績優(yōu)秀的7位同學(xué)記為A組,不使用手機(jī)且成績優(yōu)秀的18位同學(xué)記為B組,計(jì)劃從A組推選的2人和B組推選的3人中,隨機(jī)挑選兩人來分享學(xué)習(xí)經(jīng)驗(yàn).求挑選的兩人中一人來自A組、另一人來自B組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{2}{x}$+alnx-2,曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線y=x+3垂直.
(1)求實(shí)數(shù)a的值;
(2)記g(x)=f(x)+x-b(b∈R),若函數(shù)g(x)在區(qū)間[e-1,e]上有兩個零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)若不等式πf(x)>($\frac{1}{π}$)1+x-lnx在|t|≤2時恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案