設(shè)m,k為整數(shù),方程mx2-kx+2=0在區(qū)間(0,1)內(nèi)有兩個(gè)不同的根,則m+k的最小值為( )
A.-8
B.8
C.12
D.13
【答案】分析:將一元二次方程的根的分布轉(zhuǎn)化為確定相應(yīng)的二次函數(shù)的圖象來處理,根據(jù)圖象可得到關(guān)于m和k的不等式組,此時(shí)不妨考慮利用不等式所表示的平面區(qū)域來解決,但須注意這不是線性規(guī)劃問題,同時(shí)注意取整點(diǎn).
解答:解:設(shè)f(x)=mx2-kx+2,由f(0)=2,易知f(x)的圖象恒過定點(diǎn)(0,2),
因此要使已知方程在區(qū)間(0,1)內(nèi)兩個(gè)不同的根,即f(x)的圖象在區(qū)間(0,1)內(nèi)與x軸有兩個(gè)不同的交點(diǎn)
即由題意可以得到:必有,即
在直角坐標(biāo)系mok中作出滿足不等式平面區(qū)域,
如圖所示,設(shè)z=m+k,則直線m+k-z=0經(jīng)過圖中的陰影中的整點(diǎn)(6,7)時(shí),
z=m+k取得最小值,即zmin=13.
故選D.
點(diǎn)評:此題考查了二次函數(shù)與二次方程之間的聯(lián)系,解答要注意幾個(gè)關(guān)鍵點(diǎn):(1)將一元二次方程根的分布轉(zhuǎn)化一元二次函數(shù)的圖象與x軸的交點(diǎn)來處理;(2)將根據(jù)不等式組求兩個(gè)變量的最值問題處理為規(guī)劃問題;(3)作出不等式表示的平面區(qū)域時(shí)注意各個(gè)不等式表示的公共區(qū)域;(4)不可忽視求得最優(yōu)解是整點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,k為整數(shù),方程mx2-kx+2=0在區(qū)間(0,1)內(nèi)有兩個(gè)不同的根,則m+k的最小值為( 。
A、-8B、8C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m、k為整數(shù),方程mx2-kx+3=0在區(qū)間(0,1)內(nèi)有兩個(gè)不同的實(shí)根,則m+k的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,k為整數(shù),方程mx2-2kx+2=0在區(qū)間(0,1)內(nèi)有兩個(gè)不同的根,則m+k的最小值為
11
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,k為整數(shù).方程x2-mx+k=0在區(qū)間(0,1)上有兩個(gè)不同的根,則
k
m
的取值范圍是
(0,
1
2
(0,
1
2

查看答案和解析>>

同步練習(xí)冊答案