分析 (1)由條件a≠b推出:a2-2ab+b2>0,通過變形,應用不等式的性質可證出結論;
(2)利用基本不等式,再相加,即可證明結論.
解答 證明:(1)∵a≠b,∴a-b≠0,∴a2-2ab+b2>0,∴a2-ab+b2>ab.
而a,b均為正數(shù),∴a+b>0,∴(a+b)(a2-ab+b2)>ab(a+b)
∴a3+b3>a2b+ab2 成立;
(2)∵a,b,c都是正數(shù),
∴a2b2+b2c2≥2acb2,a2b2+c2a2≥2bca2,c2a2+b2c2≥2abc2,
三式相加可得2(a2b2+b2c2+c2a2)≥2abc(a+b+c),
∴a2b2+b2c2+c2a2)≥abc(a+b+c),
∴$\frac{{{a^2}{b^2}+{b^2}{c^2}+{c^2}{a^2}}}{a+b+c}$≥abc.
點評 本題考查不等式的證明,考查基本不等式的運用,考查綜合法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{2}$,1] | B. | (-∞,-1]∪[1,+∞) | C. | [-1,1] | D. | [-1,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\sqrt{1-{k}^{2}}$ | B. | $\sqrt{1-{k}^{2}}$ | C. | ±$\sqrt{1-{k}^{2}}$ | D. | -k |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com