分析 由題意畫出圖象以及過球心的截面圓,由球和正三棱錐的幾何特征可得:兩個正三棱錐的側面與底面所成的角分別為α、β,再求出涉及的線段的長度,根據(jù)兩角和的正切函數(shù)和正切函數(shù)的定義求出tan(α+β)的值.
解答 解:由題意畫出圖象如下圖:
由圖得,右側為該球過SA和球心的截面,由于三角形ABC為正三角形,
所以D為BC中點,且AD⊥BC,SD⊥BC,MD⊥BC,
故∠SDA=α,∠MDA=β.
設SM∩平面ABC=P,則點P為三角形ABC的重心,且點P在AD上,SM=2R,AB=a,
∴$AD=\frac{{\sqrt{3}}}{2}a,PA=\frac{{\sqrt{3}}}{3}a,PD=\frac{{\sqrt{3}}}{6}a$,
因此$tan(α+β)=\frac{tanα+tanβ}{1-tanαtanβ}=\frac{{\frac{SP}{PD}+\frac{MP}{PD}}}{{1-\frac{SP}{PD}•\frac{MP}{PD}}}=\frac{PD•SM}{{P{D^2}-SP•MP}}=\frac{PD•SM}{{P{D^2}-P{A^2}}}$
=$\frac{{\frac{{\sqrt{3}}}{6}a•2R}}{{\frac{a^2}{12}-\frac{a^2}{3}}}=-\frac{{4\sqrt{3}}}{3a}R$,
故答案為:$-\frac{4\sqrt{3}}{3a}R$.
點評 本題通過對球的內(nèi)接幾何體的特征考查利用兩角和的正切函數(shù)的進行計算,對考生的空間想象能力與運算求解能力以及數(shù)形結合思想都提出很高要求,本題是一道綜合題,屬于較難題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$+1 | B. | 3$\sqrt{2}$-1 | C. | $\sqrt{2}$-1 | D. | 3$\sqrt{2}$-2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com