A. | $\frac{{x}^{2}}{4}-\frac{3{y}^{2}}{4}=1$ | B. | $\frac{{x}^{2}}{4}-\frac{4{y}^{2}}{3}=1$ | C. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{8}=1$ | D. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$ |
分析 以原點(diǎn)為圓心,雙曲線的實(shí)半軸長為半徑長的圓的方程為x2+y2=4,雙曲線的兩條漸近線方程為y=±$\frac{2}$x,利用矩形ABCD的面積為2b,求出A的坐標(biāo),代入圓的方程,求得b,即可得出雙曲線的方程.
解答 解:以原點(diǎn)為圓心,雙曲線的實(shí)半軸長為半徑長的圓的方程為x2+y2=4,
雙曲線的兩條漸近線方程為y=±$\frac{2}$x,
設(shè)A(x,$\frac{2}$x),x>0,
∵四邊形ABCD的面積為2b,
∴由對稱性可得2x•bx=2b,
∴x=±1,
將A(1,$\frac{2}$)代入x2+y2=4,可得1+$\frac{^{2}}{4}$=4,
∴b2=12,
∴雙曲線的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1,
故選:D.
點(diǎn)評 本題考查雙曲線的方程與性質(zhì),注意運(yùn)用對稱性,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $-\frac{\sqrt{3}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 4-2$\sqrt{2}$ | D. | 4+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7-4\sqrt{2}}{9}$ | B. | $\frac{2\sqrt{2}-1}{3}$ | C. | $\frac{7-3\sqrt{2}}{9}$ | D. | $\frac{2\sqrt{3}-1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 243 | B. | 242 | C. | 121 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com