分析 (Ⅰ)由已知可求b2+c2-a2=$\sqrt{2}$bc,利用余弦定理可求cosA,結(jié)合A的范圍即可得解.
(Ⅱ)由已知利用同角三角函數(shù)基本關(guān)系式可求sinB,進(jìn)而由兩角和的正弦函數(shù)公式可求sinC的值,利用
正弦定理即可求c的值.
解答 解:(Ⅰ)∵a=5由 ${b^2}+{c^2}-\sqrt{2}bc=25$,得:b2+c2-a2=$\sqrt{2}$bc,…(3分)
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{2}}{2}$,
又∵A∈(0,180°),
∴A=45°.(6分)
(Ⅱ)由$cosB=\frac{3}{5}>0$,知B為銳角,
∴$sinB=\frac{4}{5}$,
∴$sinC=sin(A+B)=sinAcosB+cosAsinB=\frac{{\sqrt{2}}}{2}×\frac{3}{5}+\frac{{\sqrt{2}}}{2}×\frac{4}{5}=\frac{{7\sqrt{2}}}{10}$,…(9分)
∴由正弦定理得:$c=\frac{asinC}{sinA}=7$.…(12分)
點(diǎn)評(píng) 本題主要考查了余弦定理,同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π | B. | 9π | C. | 3π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
支持 | 反對(duì) | 合計(jì) | |
男性 | 16 | 14 | 30 |
女性 | 44 | 26 | 70 |
合計(jì) | 60 | 40 | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,3) | B. | {1,2,3} | C. | {1,2} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 16 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com