20.拋擲一枚骰子一次,出現(xiàn)“點(diǎn)數(shù)不小于5”的概率為$\frac{1}{3}$.

分析 根據(jù)古典槪型的概率公式即可得到結(jié)論.

解答 解:將一枚質(zhì)地均勻的骰子拋擲一次共有6個(gè)結(jié)果,
則出現(xiàn)“出現(xiàn)“點(diǎn)數(shù)不小于5”,包含2個(gè)結(jié)果,
則出現(xiàn)“出現(xiàn)“點(diǎn)數(shù)不小于5”的概率P=$\frac{2}{6}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$

點(diǎn)評(píng) 本題主要考查概率的計(jì)算,利用古典概率的公式是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,如果PF1的中點(diǎn)在y軸上,且|PF1|=$\frac{5}{3}$|PF2|,則橢圓的離心率e為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在數(shù)列{an}中,若a2n=2a2n-2+1,a16=127,則a2的值為( 。
A.-1B.0C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知中心在原點(diǎn)O的橢圓左,右焦點(diǎn)分別為F1,F(xiàn)2,F(xiàn)2(1,0),且橢圓過(guò)點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓的方程;
(2)過(guò)F2的直線(xiàn)l與橢圓交于不同的兩點(diǎn)A,B,則△F1AB的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)F1、F2是雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),P是雙曲線(xiàn)右支上一點(diǎn),滿(mǎn)足($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{P{F}_{2}}$=0(O為坐標(biāo)原點(diǎn)),且3|$\overrightarrow{P{F}_{1}}$|=4|$\overrightarrow{P{F}_{2}}$|,則雙曲線(xiàn)的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}是公比大于1的等比數(shù)列,且a3+a5=20,a4=8,則其前n項(xiàng)和Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=(2a+1)x+b與g(x)=x2-2(1-a)x+2在(-∞,4]上都是遞減的,實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-3]B.(-∞,-3)C.[-3,-$\frac{1}{2}$)D.(-3,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,一樓高AB為17.5m,某廣告公司在樓頂安裝一塊高BC為2m的廣告牌,安裝過(guò)程中,工作人員利用一個(gè)高EF為1.5m的儀器檢測(cè)安裝效果,設(shè)AE=xm,該儀器觀(guān)察到廣告牌的視角∠BFC=θ.
(1)若x=8,求tan∠BFC;
(2)為確保觀(guān)察效果,要求視角的正切值即tan∠BFC不小于$\frac{1}{18}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,輸出的S是下列哪個(gè)式子的值( 。
A.S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{10}$B.S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$
C.S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{11}$D.S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{22}$

查看答案和解析>>

同步練習(xí)冊(cè)答案