2.(理)將標(biāo)號為1,2,3,4,5,6的6個小球放入3個不同的盒子中.若每個盒子放2個,其中標(biāo)號為1,2的小球不能放入同一盒子中,則不同的方法共有72 種.

分析 先求出6個小球放入3個盒子,每個盒子中2個的所有種數(shù),再排除其中標(biāo)號為1,2的球放入同一個盒子的種數(shù),問題得以解決.

解答 解:將6個小球放入3個盒子,每個盒子中2個,有$C_6^2C_4^2C_2^2=90$種情況.其中標(biāo)號為1,2的球放入同一個盒子中有$C_3^1C_4^2=18$種,
所以滿足題意的方法共有90-18=72種.
故答案為:72.

點(diǎn)評 本題考查分步計數(shù)原理,考查平均分組問題,是一個易錯題,這里包含兩個步驟,先平均分組,再排列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,sinB+sinA=$\frac{\sqrt{3}(sin2A-sin2B)}{2(sinB-sinA)}$.
(Ⅰ)求角C;
(Ⅱ)若△ABC的三個內(nèi)角滿足mtanAtanB=tanC(tanA+tanB),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.從一架鋼琴挑出的7個音鍵中,分別選擇3個,4個,5個,6個,7個鍵同時按下,可發(fā)出和聲,若有一個音鍵不同,則發(fā)出不同的和聲,則這樣的不同和聲數(shù)為99(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.從棱長為1的正方體的8個頂點(diǎn)中任取3個點(diǎn),則以這三點(diǎn)為頂點(diǎn)的三角形的面積等于$\frac{1}{2}$的概率是$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.平行四邊形ABCD中,AB=$\sqrt{13}$,BC=$\sqrt{5}$,BD=4,AC,BD交于O,將△ABD沿BD折起至△A′BD,使得A′C⊥CB.
(1)求證:A′C⊥平面A′AD;
(2)求二面角A′-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當(dāng)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥1}\\{y≤1}\\{x-y≤1}\end{array}\right.$,恒有ax+y≤3,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≥0}\\{\;}\end{array}\right.$,則z=x-2y的最小值是(  )
A.3B.1C.-3D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn),點(diǎn)A(1,$\frac{\sqrt{3}}{2}$)在橢圓C上,|AF1|+|AF2|=4,則橢圓C的離心率是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+2ny-1=0(mn>0)上,求$\frac{1}{m}+\frac{1}{n}$的范圍.

查看答案和解析>>

同步練習(xí)冊答案