分析 (Ⅰ)連結BD,與AC交于G,通過中位線定理及線面平行的判定定理即得結論;
(Ⅱ)通過PA⊥CD及CD⊥AE,可得AE⊥PC,結合EF⊥PC,利用線面垂直的判定定理即得結論;
(Ⅲ)以點A為坐標原點建立空間直角坐標系A-xyz,則所求角的余弦值為平面APC的法向量與平面DPC的法向量的夾角的余弦值,計算可得結論.
解答 (Ⅰ)證明:連結BD,與AC交于G,
∵ABCD是正方形,∴則G為BD的中點,
∵E是PD的中點,∴EG∥PB,
∵EG?平面EAC,PB?平面EAC,
∴PB∥平面EAC;
(Ⅱ)證明:∵PA⊥底面ABCD,CD?平面ABCD,∴PA⊥CD,
∵CD⊥AD,PA∩AD=A,∴CD平面PAD,
∵AE?平面PAD,∴CD⊥AE,
∵E是PD的中點,PA=AD,∴AE⊥PD,
∵PD∩CD=D,∴AE⊥平面PCD,
而PC?平面PCD,∴AE⊥PC,
又EF⊥PC,AE∩EF=E,
∴PC⊥平面AEF;
(Ⅲ)解:如圖以點A為坐標原點建立空間直角坐標系A-xyz,設AB=1,
則$\overrightarrow{AP}$=(0,0,1),$\overrightarrow{AC}$=(1,1,0),$\overrightarrow{DC}$=(0,1,0),
$\overrightarrow{PD}$=(1,0,0)-(0,0,1)=(1,0,-1),
設平面APC的法向量是$\overrightarrow{m}$=(x,y,z),則$\overrightarrow{AP}•\overrightarrow{m}$=0,$\overrightarrow{AC}•\overrightarrow{m}$=0,
所以z=0,x+y=0,即$\overrightarrow{m}$=(1,-1,0),
設平面DPC的法向量是$\overrightarrow{n}$=(x,y,z),則$\overrightarrow{DC}•\overrightarrow{n}$=0,$\overrightarrow{PD}•\overrightarrow{n}$=0,
所以y=0,x-z=0,即$\overrightarrow{n}$=(1,0,1),
∴cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}•\sqrt{2}}$=$\frac{1}{2}$,
即二面角A-PC-D的大小為$\frac{π}{3}$.
點評 本題考查線面平行、線面垂直的判定,以及求二面角的大小,注意解題方法的積累,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com