8.已知函數(shù)f(x)=asin(πx+α)+bcos(πx+β),且f(2 009)=3,則f(2 011)的值是( 。
A.-1B.-2C.3D.1

分析 由題意利用誘導(dǎo)公式求得-asinα-bcosα=3,再利用誘導(dǎo)公式化簡要求得式子,可的結(jié)果.

解答 解:函數(shù)f(x)=asin(πx+α)+bcos(πx+β),
且f(2 009)=asin(2009π+α)+bcos(2009π+β)=-asinα-bcosα=3,
則f(2 011)=asin(2011π+α)+bcos(2011π+β)=-asinα-bcosα=3,
故選:C.

點(diǎn)評 本題主要考查利用誘導(dǎo)公式進(jìn)行化簡求值,求得-asinα-bcosα=3,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知在三棱錐P-ABC中,VP-ABC=$\frac{4\sqrt{3}}{3}$,∠APC=$\frac{π}{4}$,∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P-ABC外接球的半徑為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=x3-3x2+2,函數(shù)g(x)=$\left\{\begin{array}{l}{-(x+3)^{2}+1,x<0}\\{(x-\frac{1}{2})^{2}+1,x≥0}\end{array}\right.$,則關(guān)于x的方程g[f(x)]-a=0(a>0)的實(shí)根最多有( 。
A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線x2-ky2=1的一個(gè)焦點(diǎn)是($\sqrt{5}$,0),則k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知($\sqrt{x}$+$\frac{2}{x^2}$)n的展開式中,只有第六項(xiàng)的二項(xiàng)式系數(shù)最大
(1)求該展開式中常數(shù)項(xiàng);
(2)求展開式中系數(shù)最大的項(xiàng)為第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若cos100°=k,則tan(-80°)=( 。
A.-$\frac{\sqrt{1-{k}^{2}}}{k}$B.$\frac{\sqrt{1-{k}^{2}}}{k}$C.±$\frac{\sqrt{1-{k}^{2}}}{k}$D.k$\sqrt{1-{k}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知z∈C,且|z-2-2i|=1,則|z|的最小值為2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A(1,2),B(-1,2),動(dòng)點(diǎn)P滿足$\overrightarrow{AP}⊥\overrightarrow{BP}$,若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線與動(dòng)點(diǎn)P的軌跡沒有公共點(diǎn),則雙曲線離心率的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={x|x2-3x+2=0},B={x|x2-(m+1)x+m=0},若B?A,則m=1;若B⊆A,則m=1或2.

查看答案和解析>>

同步練習(xí)冊答案