11.將邊長為2的正方形ABCD沿對角線AC折起,使BD=2,則三棱錐D-ABC的體積為$\frac{2\sqrt{2}}{3}$.

分析 取AC的中點(diǎn),連結(jié)OB,OD,求出OB,OD,利用勾股定理的逆定理得出OB⊥OD,結(jié)合OD⊥AC得出OD⊥平面ABC,代入棱錐的體積公式計(jì)算即可.

解答 解:取AC的中點(diǎn)O,連結(jié)OB,OD,
∵AD=CD=2,∠ADC=90°,
∴AC=2$\sqrt{2}$,OD=$\frac{1}{2}$AC=$\sqrt{2}$,OD⊥AC.
同理OB=$\sqrt{2}$,
∵BD=2,
∴OD2+OB2=BD2,∴OB⊥OD,
又AC?平面ABC,OB?平面ABC,AC∩OB=O,
∴OD⊥平面ABC,
∴VD-ABC=$\frac{1}{3}{S}_{△ABC}•OD$=$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{2}=\frac{2\sqrt{2}}{3}$.
故答案為:$\frac{2\sqrt{2}}{3}$.

點(diǎn)評 本題考查了線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合M={x|-2<x<3},N={y|y=log2(x2+1)},則M∩N=( 。
A.[1,3)B.[0,3)C.(-2,3)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.各項(xiàng)均為正數(shù)的等差數(shù)列{an},其公差d>0,前n項(xiàng)和為Sn,若a1,a2,a5構(gòu)成等比數(shù)列,則下列能構(gòu)成的等比數(shù)列的是( 。
A.S1,S2,S3B.S1,S2,S4C.S1,S3,S4D.S2,S3,S4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an}是公差為d(d≠0)的等差數(shù)列,它的前n項(xiàng)和記為An,數(shù)列{bn}是公比為q(q≠1)的等比數(shù)列,它的前n項(xiàng)和記為Bn.若a1=b1≠0,且存在不小于3的正整數(shù)k,m,使ak=bm
(1)若a1=1,d=2,q=3,m=4,求Ak
(2)若a1=1,d=2,試比較A2k與B2m的大小,并說明理由;
(3)若q=2,是否存在整數(shù)m,k,使Ak=86Bm,若存在,求出m,k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD是邊長為2的正三角形,且側(cè)面PAD⊥底面ABCD,E為側(cè)棱PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)求證:AE⊥平面PCD;
(3)若直線AC與平面PCD所成的角為30°,求三棱錐D-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知冪函數(shù)y=f(x),f′(x)為f(x)的導(dǎo)函數(shù),f(x)在區(qū)間[0,1]上圖象如圖所示.對滿足:0<x1<x2<1的任意x1、x2,給出下列結(jié)論:
①f(x1)-f(x2)>x1-x2
②x2f(x1)>x1f(x2
③$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)
④[f′(x1)-f′(x2)](x1-x2)>0
其中一定正確結(jié)論的序號是( 。
A.①②③B.①③C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),直線PF與拋物線C相交于A、B兩點(diǎn),若$\overrightarrow{FP}$=3$\overrightarrow{FA}$,則|AB|=( 。
A.5B.$\frac{16}{3}$C.$\frac{22}{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(Ⅰ)已知非零常數(shù)a、b滿足$a+b=\frac{1}{a}+\frac{1}$,求不等式|-2x+1|≥ab的解集;
(Ⅱ)若?x∈[1,2],x-|x-a|≤1恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知拋物線C:y2=2px(p>0)上的一點(diǎn)M(3,t)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點(diǎn)T(-2,0)的直線l與拋物線C交于A,B兩點(diǎn),若在x軸上存在一點(diǎn)E,使得△EAB是以點(diǎn)E為直角頂點(diǎn)的直角三角形,求直線l的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案