分析 利用對(duì)任意的實(shí)數(shù)x,恒有f(x)≤g(x),求出m的值,不等式k(n+m)≥$\frac{g(n)-g(m)}{n-m}$恒成立,即不等式k≥$\frac{n+4}{n+2}$=1+$\frac{2}{n+2}$(n+2>0)恒成立,求出右邊1+$\frac{2}{n+2}$>1,即可求出實(shí)數(shù)k的最小值.
解答 解:∵對(duì)任意的實(shí)數(shù)x,恒有f(x)≤g(x),
∴x2+(m-2)x≥0,
∴m=2,
不等式k(n+m)≥$\frac{g(n)-g(m)}{n-m}$恒成立,即不等式k≥$\frac{n+4}{n+2}$=1+$\frac{2}{n+2}$(n+2>0)恒成立
∴k≥1.
∴實(shí)數(shù)k的最小值為1.
故答案為:1.
點(diǎn)評(píng) 本題考查恒成立問(wèn)題,考查分離參數(shù)法的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 0 | D. | 與a有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com