分析 (1)曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\sqrt{2}t}\\{y=-1+\sqrt{2}t}\end{array}}\right.$(t為參數(shù)),兩式相加消去參數(shù)t即可化為普通方程;由曲線C2的極坐標(biāo)方程為$ρ=\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$,平方化為ρ2+3ρ2sin2θ=4,利用$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{y=ρsinθ}\end{array}\right.$即可化為直角坐標(biāo)方程.(2)將$\left\{\begin{array}{l}x=2-\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.({t為參數(shù)})$代入C2直角坐標(biāo)方程得$5{t^2}-12\sqrt{2}t+8=0$,利用MA|•|MB|=t1•t2即可得出.
解答 解:(1)曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\sqrt{2}t}\\{y=-1+\sqrt{2}t}\end{array}}\right.$(t為參數(shù)),消去參數(shù)t化為x+y=1;
由曲線C2的極坐標(biāo)方程為$ρ=\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$,平方化為ρ2+3ρ2sin2θ=4,∴x2+4y2=4,化為直角坐標(biāo)方程:$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)將$\left\{\begin{array}{l}x=2-\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.({t為參數(shù)})$代入C2直角坐標(biāo)方程得$5{t^2}-12\sqrt{2}t+8=0$,
∴${t_1}•{t_2}=\frac{8}{5}$,
∴MA|•|MB|=${t_1}•{t_2}=\frac{8}{5}$.
點(diǎn)評(píng) 本題考查了參數(shù)方程化為直角坐標(biāo)方程、極坐標(biāo)方程與直角坐標(biāo)方程的互化、直線參數(shù)方程的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M1=M2=M3=M4 | B. | M1?M2?M3?M4 | C. | M1⊆M2⊆M3⊆M4 | D. | M1?M2,M2=M3⊆M4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于原點(diǎn)對(duì)稱 | B. | 關(guān)于x軸對(duì)稱 | C. | 關(guān)于y軸對(duì)稱 | D. | 不是對(duì)稱圖形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)在(0,+∞)上是增函數(shù) | B. | 函數(shù)f(x)在(0,+∞)上是減函數(shù) | ||
C. | 函數(shù)f(x)是奇函數(shù) | D. | 函數(shù)f(x)是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com