5.若2sin2($\frac{π}{4}$+$\frac{x}{2}$)=1-cos(π-x),則sin2x=( 。
A.-1B.0C.$\frac{1}{2}$D.1

分析 由三角函數(shù)中的恒等變換應(yīng)用化簡已知等式可得sinx=cosx,從而可得2x=2k$π+\frac{π}{2}$,k∈Z,從而可求sin2x的值.

解答 解:∵2sin2($\frac{π}{4}$+$\frac{x}{2}$)=1-cos(π-x),
∴1-cos($\frac{π}{2}$+x)=1+cosx,
∴1+sinx=1+cosx,即可解得:sinx=cosx.
∴解得:x=k$π+\frac{π}{4}$,k∈Z,即2x=2k$π+\frac{π}{2}$,k∈Z,
∴sin2x=sin(2k$π+\frac{π}{2}$)=1,
故選:D.

點評 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用和特殊角的三角函數(shù)求值,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.錯位相減法求和:an=(2n+1)•3n,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某同學(xué)為了計算函數(shù)y=lnx圖象與x軸,直線x=1,x=e所圍成形狀A(yù)的面積,采用“隨機模擬方法”,用計算機分別產(chǎn)生10個在[1,e]上的均勻隨機數(shù)xi(1≤i≤10)和10個在[0,1]上的均勻隨機數(shù)yi(1≤i≤10),其數(shù)據(jù)記錄為如下表的前兩行.
xi2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22
yi0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10
lnxi0.92 0.01 0.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80
(1)依次表格中的數(shù)據(jù)回答,在圖形A內(nèi)的點有多少個,分別是什么?
(2)估算圖形A的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點;
(3)設(shè)h(x)=f(f(x))-c,其中c∈[-2,2],求函數(shù)y=h(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\sqrt{2}t}\\{y=-1+\sqrt{2}t}\end{array}}\right.$(t為參數(shù)),以原點為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρ=\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)點M(2,-1),曲線C1與曲線C2交于A,B,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i為虛數(shù)單位,若$\frac{1+i}{z}=1-2i$,則復(fù)數(shù)z所對應(yīng)的點所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,且PA⊥平面ABCD,點M是棱PA的中點.
(1)若PA=4,求點C到平面BMD的距離;
(2)過直線BD且垂直于直線PC的平面交PC于點N,如果三棱錐N-BCD的體積取到最大值,求此時二面角M-ND-B的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法中正確的是( 。
A.若命題p:?x∈R有x2>0,則¬p:?x∈R有x2≤0
B.若p是q的充分不必要條件,則¬p是¬q的必要不充分條件
C.若命題p:$\frac{1}{x-1}$>0,則¬p:$\frac{1}{x-1}$≤0
D.方程ax2+x+a=0有唯一解的充要條件是a=±$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.實數(shù)X,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+3y-3≥0\\ 3x+y-9≤0\end{array}\right.$,若z=ax+y的最大值為2a+3,則a的取值范圍是( 。
A.[-3,1]B.[-1,3]C.(-∞,1]D.[3,+∞)

查看答案和解析>>

同步練習(xí)冊答案