已知平行于直線2x-y+1=0的直線l與雙曲線
x2
3
-
y2
2
=1交于A,B兩點(diǎn),且|AB|=4.
(1)求直線l的方程
(2)求△AOB的面積,O為原點(diǎn).
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由兩直線平行的條件,可得直線l:2x-y+t=0,聯(lián)立雙曲線方程,消去y,得x的二次方程,運(yùn)用判別式大于0,韋達(dá)定理,以及弦長公式,計(jì)算可得t,進(jìn)而得到所求直線方程;
(2)求出原點(diǎn)到直線l的距離d,再由三角形的面積公式計(jì)算即可得到所求值.
解答: 解:(1)設(shè)平行于直線2x-y+1=0的直線l:2x-y+t=0,
聯(lián)立雙曲線方程2x2-3y2=6,
消去y,得10x2+12tx+3t2+6=0,
判別式144t2-40(3t2+6)>0,解得,t2>10.
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-
6t
5
,x1x2=
3t2+6
10
,
則|AB|=
1+4
(x1+x2)2-4x1x2
=
5
36t2
25
-
12t2+24
10
=4,
解得,t2=
70
3
>10成立,即有t=±
210
3

則直線l的方程為y=2x±
210
3
;
(2)原點(diǎn)到直線l的距離d=
210
3
1+4
=
42
3
,
則△AOB的面積S=
1
2
•d•
|AB|=
1
2
×
42
3
×4
=
2
42
3
點(diǎn)評(píng):本題考查直線方程和雙曲線方程聯(lián)立,消去未知數(shù),運(yùn)用韋達(dá)定理和弦長公式,考查兩直線的平行的條件及點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù),C2
x=6cosθ
y=2sinθ
(θ為參數(shù)).
(Ⅰ)C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)t=
π
2
,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
x=-3
3
+
3
t
y=-3-t
(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-x1)(x-x2)(x-x3),x1,x2,x3∈R,且x1<x2<x3
(Ⅰ)當(dāng)x1=0,x2=1,x3=2時(shí),若方程f(x)=mx恰存在兩個(gè)相等的實(shí)數(shù)根,求實(shí)數(shù)m的值;
(Ⅱ)求證:方程f′(x)=0有兩個(gè)不相等的實(shí)數(shù)根;
(Ⅲ)若方程f'(x)=0的兩個(gè)實(shí)數(shù)根是α,β(α<β),試比較
x1+x2
2
與α,β的大小并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在xOy平面內(nèi)的直線x+y=1上確定一點(diǎn)M,則M到空間直角坐標(biāo)系Oxyz的點(diǎn)N(2,3,1)的最小距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)正三棱柱的三視圖如圖所示,則這個(gè)正三棱柱的體積是( 。
A、2
3
B、4
3
C、6
3
D、8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P在圓C1:x2+(y+3)2=1上,點(diǎn)Q在圓C2:(x-4)2+y2=4上,則|PQ|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=0x(2t+2)dt+alnx
(1)當(dāng)a=-4時(shí),求函數(shù)f(x)的最小值;
(2)當(dāng)t≥1時(shí),不等式f(2t-1)≥2f(t)-3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個(gè)焦點(diǎn)在拋物線y2=48x的準(zhǔn)線上,則雙曲線的方程為( 。
A、
x2
36
-
y2
108
=1
B、
x2
108
-
y2
36
=1
C、
x2
9
-
y2
27
=1
D、
x2
27
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-3)2+(y-4)2=4上的點(diǎn)到直線x+y-14=0的最大距離
 

查看答案和解析>>

同步練習(xí)冊答案