18.已知$|{\overrightarrow{OA}}|=1$,$|{\overrightarrow{OB}}|=\sqrt{3}$,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為90°,點C在AB上,且∠AOC=30°.設$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),求$\frac{m}{n}$的值.

分析 可得,∠COB=60°,OC⊥AB,△AOC,△BOC都是直角三角形,則 OC=OAsin60°=$\frac{\sqrt{3}}{2}$,在方程$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$兩邊同乘以向量$\overrightarrow{OA}$、$\overrightarrow{OB}$得$\left\{\begin{array}{l}{1×\frac{\sqrt{3}}{2}×cos3{0}^{0}=m×1+0}\\{\frac{\sqrt{3}}{2}×\sqrt{3}×cos6{0}^{0}=0+3n}\end{array}\right.$,可得$\frac{m}{n}$的值為3.

解答 解:$|{\overrightarrow{OA}}|=1$,$|{\overrightarrow{OB}}|=\sqrt{3}$,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為90°,點C在AB上,且∠AOC=30°,
∴在直角三角形ABC中,B=30°,∠COB=60°,∴OC⊥AB,
 則△AOC,△BOC都是直角三角形,
則 OC=OAsin60°=$\frac{\sqrt{3}}{2}$,
在方程$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$兩邊同乘以向量$\overrightarrow{OA}$、$\overrightarrow{OB}$得:$\left\{\begin{array}{l}{\overrightarrow{OC}•\overrightarrow{OA}=m{\overrightarrow{OA}}^{2}+n\overrightarrow{OB}•\overrightarrow{OA}}\\{\overrightarrow{OC}•\overrightarrow{OB}=m\overrightarrow{OA}•\overrightarrow{OB}+n{\overrightarrow{OB}}^{2}}\end{array}\right.$,
即$\left\{\begin{array}{l}{1×\frac{\sqrt{3}}{2}×cos3{0}^{0}=m×1+0}\\{\frac{\sqrt{3}}{2}×\sqrt{3}×cos6{0}^{0}=0+3n}\end{array}\right.$,∴$\left\{\begin{array}{l}{m=\frac{3}{4}}\\{n=\frac{1}{4}}\end{array}\right.$,∴$\frac{m}{n}$的值為3.

點評 本題考查了向量的數(shù)量積運算、線性運算,考查了轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知圓C:(x-2)2+y2=4,點P在直線l:y=x+3上,若圓C上存在兩點A、B使得$\overrightarrow{PA}$=3$\overrightarrow{PB}$,則點P的橫坐標的取值范圍是$[{\frac{{-1-\sqrt{7}}}{2},\frac{{-1+\sqrt{7}}}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.某地區(qū)氣象臺統(tǒng)計,該地區(qū)下雨的概率是$\frac{4}{15}$,刮風的概率為$\frac{2}{5}$,既刮風又下雨的概率為$\frac{1}{10}$,設A為下雨,B為刮風,那么P(B|A)等于$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.現(xiàn)從編號為1~31的31臺機器中,用系統(tǒng)抽樣法抽取3臺,測試其性能,則抽出的編號可能為( 。
A.4,9,14B.4,6,12C.2,11,20D.3,13,23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.△ABC面積為$\frac{15\sqrt{3}}{4}$,且a=3,c=5,則sinB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知m>0,n>0,且mn=2,則2m+n的最小值為(  )
A.4B.5C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點$P(2,\sqrt{2})$,一個焦點F的坐標為(2,0).
(1)求橢圓C的方程;
(2)設直線l:y=kx+1與橢圓C交于A,B兩點,O為坐標原點,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.根據(jù)如下樣本數(shù)據(jù):
x34567
y4.02.50.5-0.5-2.0
得到的回歸方程為$\stackrel{∧}{y}$=bx+a.若a=8.4,則估計x,y的變化時,若x每增加1個單位,則y就(  )
A.增加1.2個單位B.減少1.5個單位C.減少2個單位D.減少1.2個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.函數(shù)f(x)=(log2x)2-log2x2+3,當x∈[1,4]時,f(x)的最大值為m,最小值為n
(1)若角α的始邊在x軸的非負半軸上,終邊經(jīng)過點P(m,n),求sinα+cosα的值;
(2)設$g(x)=mcos(nx+\frac{π}{m})-m$,求g(x)在$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

同步練習冊答案