4.已知函數(shù)f(x)滿足f(x)=-f(x-1),則函數(shù)f(x)的圖象不可能發(fā)生的情形是( 。
A.B.C.D.

分析 根據(jù)圖象變換規(guī)律即可得出答案.

解答 解:∵f(x)=-f(x-1),
∴f(x)的圖象向右平移一個單位后,再沿x軸對折后與原圖重合,
顯然C不符合題意.
故選C.

點評 本題考查函數(shù)的圖象的變換,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點A(-1,1),B(1,2),C(-2,-1),D(3,4),則向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影為-$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.全集U={1,2,3,4,5,6},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},則集合∁U(A∪B)的子集個數(shù)為(  )
A.1B.3C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=\frac{cos6x}{{{2^x}-{2^{-x}}}}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線x2=4y的焦點為F,設(shè)A(x1,y1),B(x2,y2)是拋物線上的兩個動點,如滿足y1+y2+2=$\frac{2\sqrt{3}}{3}$|AB|,則∠AFB的最大值( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.2011年,國際數(shù)學(xué)協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源則是中國古代數(shù)學(xué)家祖沖之的圓周率.祖沖之,在世界數(shù)學(xué)史上第一次將圓周率(π)值計算到小數(shù)點后的第7位,即3.1415926到3.1415927之間,數(shù)列{an}是公差大于0的等差數(shù)列,其前三項是“31415926”中連續(xù)的三個數(shù),數(shù)列{bn}是等比數(shù)列,其公比大于1的正整數(shù)且前三項是“31415926”中的三個數(shù),且a3=b3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)cn=$\left\{\begin{array}{l}{\frac{32}{({a}_{n}+3)•({a}_{n+2}+3)},n=2k-1(k∈N*)}\\{lo{g}_{3}_{n+1},n=2k(k∈N*)}\end{array}\right.$,求c1+c2+c3+…+c${\;}_{{2}^{n}}$.(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨著社會發(fā)展,襄陽市在一天的上下班時段也出現(xiàn)了堵車嚴(yán)重的現(xiàn)象.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r段(T≥3 ),從襄陽市交通指揮中心隨機選取了一至四馬路之間50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(I)據(jù)此直方圖估算交通指數(shù)的中位數(shù)和平均數(shù);
(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個路段至少有2個嚴(yán)重?fù)矶碌母怕适嵌嗌伲?br />(III)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴(yán)重?fù)矶聻?0分鐘,求此人用時間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)$y=sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{1}{6}$個周期后,所得圖象對應(yīng)的函數(shù)g(x)的一個單調(diào)增區(qū)間為( 。
A.[0,π]B.$[{-\frac{π}{2},0}]$C.$[{0,\frac{π}{2}}]$D.[-π,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若變量x,y滿足條件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-6≤0\\ x-1≥0\end{array}\right.$,則xy的取值范圍是( 。
A.[0,5]B.$[{5,\frac{35}{4}}]$C.$[{0,\frac{35}{4}}]$D.[0,9]

查看答案和解析>>

同步練習(xí)冊答案