已知x,y滿足
x≥1
x+y≤4
ax+by+c≤0
,且2x+y的取值范圍是[1,7],則
a+b+c
a
=( 。
A、1B、2C、-1D、-2
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,求出最優(yōu)解,利用數(shù)形結(jié)合即可得到a,b,c的關(guān)系,即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
設(shè)z=2x+y得y=-2x+z,
平移直線y=-2x+z,
∵2x+y的取值范圍是[1,7],
∴1≤2x+y≤7,
2x+y=1
x=1
,解得
x=1
y=-1
,即A(1,-1),此時函數(shù)z=2x+y取得最小值.
2x+y=7
x+y=4
,解得
x=3
y=1
,即B(3,1),此時z=2x+y取得最大值.
同時直線ax+bx+c=0,經(jīng)過點A,B.
a-b+c=0
3a+b+c=0
,解得
c=-2a
b=-a
,
a+b+c
a
=
a-a-2a
a
=-2

故選:D.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,求出最優(yōu)解,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所經(jīng)過的定點F恰好是中心在原點的橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點A的坐標(biāo)為(-2,1),M為橢圓C上任意一點,求|MF|+|MA|的最大值;
(Ⅲ)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明當(dāng)點P(m,n)在橢圓C上運動時,直線l與圓O恒相交,并求直線l被圓O所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),在圖形變化過程中,圖①中線段AM的長度對應(yīng)于圖③中的弧ADM的長度,如圖③.圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.
給出下列命題:
①f(
1
4
)=1;
②f(x)在定義域(0,1)上單調(diào)遞增;
③f(x)為偶函數(shù); ④f(x)=-f(1-x);
⑤關(guān)于m的不等式|f(m)|≤1的解集為[
1
4
,1]

則所有正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5;則f(x)=a2x2+a1x+a0的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x1
x1+1
=
x2
x2+3
=
x3
x3+5
=…
xn
xn+2n-1
,且x1+x2+…x2014=2014,則x1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點M是BC中點.若∠A=120°,
AB
AC
=-
1
2
,則|
AM
|
的最小值是( 。
A、
2
B、
2
2
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x、y滿足
x-2y+3≥0
3x+2y-7≤0
x+2y-1≥0
,則z=(
1
2
x•4-y的最小值為( 。
A、
1
32
B、
1
16
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列三個命題:
①在區(qū)間[0,1]內(nèi)任取兩個實數(shù)x,y,則事件“x2+y2>1成立”的概率是1-
π
4

②函數(shù)f(x)關(guān)于(3,0)點對稱,滿足f(6+x)=f(6-x),且當(dāng)x∈[0,3]時函數(shù)為增函數(shù),則f(x)在[6,9]上為減函數(shù);
③滿足A=30°,BC=1,AB=
3
的△ABC有兩解.
其中正確命題的個數(shù)為( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為
2
2
,P是橢圓上一點,且△PF1F2面積的最大值等于2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M(0,2)作直線l與直線MF2垂直,試判斷直線l與橢圓的位置關(guān)系.
(Ⅲ)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案