A. | 直角三角形 | B. | 等邊三角形 | C. | 鈍角三角形 | D. | 等腰直角三角形 |
分析 利用三角形重心定理、平面向量基本定理、向量平行四邊形法則即可得出.
解答 解:∵G是△ABC的重心,$\overrightarrow{GA}$=-$\frac{2}{3}$×$\frac{1}{2}$$(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{GB}$=$\frac{1}{3}$$(\overrightarrow{BA}+\overrightarrow{BC})$,$\overrightarrow{GC}$=$\frac{1}{3}$$(\overrightarrow{CA}+\overrightarrow{CB})$,
又a$\overrightarrow{GA}$+b$\overrightarrow{GB}$+c$\overrightarrow{GC}$=$\overrightarrow{0}$,
∴(a-b)$\overrightarrow{AB}$+(a-c)$\overrightarrow{AC}$+(b-c)$\overrightarrow{BC}$=$\overrightarrow{0}$,
∴a-b=a-c=b-c,
∴a=b=c.
∴△ABC的形狀是等邊三角形.
故選:B.
點(diǎn)評 本題考查了三角形重心定理、平面向量基本定理、向量平行四邊形法則,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1-i | B. | -1+i | C. | 1-i | D. | 1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cos(2x-$\frac{π}{2}$) | B. | y=sinxcosx | C. | y=sinx+cosx | D. | f(x)=|sinx| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|x| | B. | f(x)=$\frac{1}{x}$ | C. | f(x)=lnx | D. | f(x)=ex |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com