15.設(shè)復(fù)數(shù)z1=2+ai(其中a∈R),z2=3-4i.
(1)若a=1,求z1z2的值
(2)若z1+z2是實(shí)數(shù),求a的值.

分析 (1)利用復(fù)數(shù)乘法運(yùn)算法則即可得出;
(2)利用復(fù)數(shù)為實(shí)數(shù)的充要條件即可得出.

解答 解:(1)z1z2=(2+i)(3-4i)=6+4+(3-8)i=10-5i.
(2)z1+z2=5+(a-4)i是實(shí)數(shù),∴a-4=0,解得a=4.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)為實(shí)數(shù)的充要條件,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知△ABC,A,B,C對(duì)的邊分別為a,b,c,asinB=$\frac{\sqrt{3}}{2}$b.
(1)求角A的大;
(2)若A為銳角,且a=$\sqrt{3}$,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.復(fù)數(shù)i(1+i)的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.己知圓C:x2-2x+y2-4y-20=0.直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)證明不論m取什么實(shí)數(shù),直l與圓恒相交;
(2)求直線l被圓C截得的線段最短長(zhǎng)度以及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若集合A={x|x2-4<0},集合B={x|x<0},則A∩B={x|-2<x<0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=3tan2x的對(duì)稱中心(k∈Z)為( 。
A.($\frac{k}{2}π$,0)B.($\frac{k}{4}π$,0)C.($\frac{kπ}{2}$+$\frac{π}{4}$,0)D.(kπ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.閱讀如圖的算法框圖,輸出的結(jié)果S的值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.0D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項(xiàng)等比數(shù)列{bn}滿足:b1=2,b3=8.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式an,bn;
(2)求數(shù)列{(an+1)•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x2-7,則f(-2)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案