20.函數(shù)y=3tan2x的對(duì)稱中心(k∈Z)為(  )
A.($\frac{k}{2}π$,0)B.($\frac{k}{4}π$,0)C.($\frac{kπ}{2}$+$\frac{π}{4}$,0)D.(kπ,0)

分析 根據(jù)正切函數(shù)的對(duì)稱中心列方程解出.

解答 解:令2x=$\frac{kπ}{2}$得x=$\frac{kπ}{4}$,∴函數(shù)y=3tan2x的對(duì)稱中心為($\frac{kπ}{4}$,0).
故選:B.

點(diǎn)評(píng) 本題考查了正切函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.以M(1,2)為圓心的圓與直線3x-4y+8=0相交,那么圓的半徑的取值范圍是($\frac{3}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“a=3”是“直線ax+2y+3a=0和直線3x+(a-1)y+7=0平行”的充分不必要條件.(“充分不必要”“必要不充分”“充要”“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等差數(shù)列{an}的公差d>0,則下列四個(gè)命題:
①數(shù)列{an}是遞增數(shù)列;             
②數(shù)列{nan}是遞增數(shù)列;
③數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是遞增數(shù)列;            
④數(shù)列{an+3nd}是遞增數(shù)列;
其中正確命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)復(fù)數(shù)z1=2+ai(其中a∈R),z2=3-4i.
(1)若a=1,求z1z2的值
(2)若z1+z2是實(shí)數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1.
(1)求$\overrightarrow{a}$•$\overrightarrow$;
(2)|$\overrightarrow{a}$-2$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=$\sqrt{6}$+$\sqrt{7}$,b=$\sqrt{5}$+$\sqrt{8}$,c=5,則a、b、c的大小關(guān)系為(  )
A.c<b<aB.b<c<aC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合A={-2,-1,0,1,2},B={x||x|≤1},則A∩B=( 。
A.{-1,0,1}B.{0,1}C.{x|-1≤x≤1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}的通項(xiàng)公式為an=sin$\frac{nπ}{3}$,則a3=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案