在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+
π
4
)=4
2

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)由條件利用同角三角函數(shù)的基本關(guān)系把參數(shù)方程化為直角坐標(biāo)方程,利用直角坐標(biāo)和極坐標(biāo)的互化公式x=ρcosθ、y=ρsinθ,把極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)求得橢圓上的點(diǎn)P(
3
cosα,sinα)
到直線x+y-8=0的距離為d=
|
3
cosα+sinα-8|
2
=
|2sin(α+
π
3
)-8|
2
,可得d的最小值,以及此時(shí)的α的值,從而求得點(diǎn)P的坐標(biāo).
解答: 解:(1)由曲線C1
x=
3
cosα
y=sinα
,可得
x
3
=cosα
y=sinα
,兩式兩邊平方相加得:(
x
3
)2+y2=1
,
即曲線C1的普通方程為:
x2
3
+y2=1

由曲線C2ρsin(θ+
π
4
)=4
2
得:
2
2
ρ(sinθ+cosθ)=4
2

即ρsinθ+ρcosθ=8,所以x+y-8=0,
即曲線C2的直角坐標(biāo)方程為:x+y-8=0.
(2)由(1)知橢圓C1與直線C2無公共點(diǎn),橢圓上的點(diǎn)P(
3
cosα,sinα)
到直線x+y-8=0的距離為d=
|
3
cosα+sinα-8|
2
=
|2sin(α+
π
3
)-8|
2
,
∴當(dāng)sin(α+
π
3
)=1
時(shí),d的最小值為3
2
,此時(shí)點(diǎn)P的坐標(biāo)為(
3
2
,
1
2
)
點(diǎn)評:本題主要考查把參數(shù)方程、極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,正弦函數(shù)的值域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,已知向量
m
=(cosA,cosB),
n
=(2c+b,a),且
m
n

(Ⅰ) 求角A的大小;
(Ⅱ) 若a=4
3
,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三內(nèi)角A、B、C成等差數(shù)列,sin2B=sinAsinC,則這個(gè)三角形的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c表示△ABC的邊長,m>0.求證:
a
a+m
+
b
b+m
c
c+m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2
(1)求
sinx-cosx
sinx+cosx
的值
(2)求cos2x-sin2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)的和Sn=n2+1.
(1)試寫出數(shù)列的前5項(xiàng);
(2)數(shù)列{an}是等差數(shù)列嗎?
(3)你能寫出數(shù)列{an}的通項(xiàng)公式嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+5x-6≤0},B={x|x2+3x≥0},求A∩B和A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+blnx的圖象在x=4處的切線與直線y=6x+3平行.
(Ⅰ)求b的值; 
(Ⅱ)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)滿足f(x+2)=-f(x),且當(dāng)x∈(0,1)時(shí),f(x)=2x,則f(
7
2
)的值為
 

查看答案和解析>>

同步練習(xí)冊答案