分析 根據(jù)向量的坐標運算求出向量$\overrightarrow{OA}$、$\overrightarrow{MN}$所成角的余弦值,即可得出直線OA與MN所成角的余弦值.
解答 解:$\overrightarrow{OA}$=(0,1,0),$\overrightarrow{MN}$=(-$\sqrt{2}$,2,$\sqrt{2}$),
∴$\overrightarrow{OA}$•$\overrightarrow{MN}$=0×(-$\sqrt{2}$)+1×2+0×$\sqrt{2}$=2,
|$\overrightarrow{OA}$|=1,|$\overrightarrow{MN}$|=$\sqrt{{(-\sqrt{2})}^{2}{+2}^{2}{+(\sqrt{2})}^{2}}$=2$\sqrt{2}$;
∴cos<$\overrightarrow{OA}$,$\overrightarrow{MN}$>=$\frac{\overrightarrow{OA}•\overrightarrow{MN}}{|\overrightarrow{OA}|×|\overrightarrow{MN}|}$=$\frac{2}{1×2\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
即直線OA與MN所成角的余弦值為$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.
點評 本題考查了空間向量的坐標運算與夾角問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com