【題目】若函數(shù)f(x)=a|x﹣b|+c滿足①函數(shù)f(x)的圖象關于x=1對稱;②在R上有大于零的最大值;③函數(shù)f(x)的圖象過點(0,1);④a,b,c∈Z,試寫出一組符合要求的a,b,c的值

【答案】滿足b=1,a+c=1,a<0,c>0,a,b,c∈z皆可
【解析】∵函數(shù)f(x)=a|x﹣b|+c滿足①函數(shù)f(x)的圖象關于x=1對稱
∴b=1;
∵函數(shù)f(x)=a|x﹣b|+c滿足②在R上有大于零的最大值;
∴a<0,c>0;
∵函數(shù)f(x)=a|x﹣b|+c滿足③函數(shù)f(x)的圖象過點(0,1);
∴a+c=1;
故試寫出一組滿足b=1,a+c=1,a<0,c>0,a,b,c∈z要求的a,b,c的值皆可.
所以答案是:滿足b=1,a+c=1,a<0,c>0,a,b,c∈z皆可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當x∈(﹣ , )時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知函數(shù)f(x)=x3ax2bxc,曲線yf(x)在點x=1處的切線方程為

ly=3x+1,且當x時,yf(x)有極值.

(1)求a,b,c的值;

(2)求yf(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)f(x)=x2﹣2ax﹣1在[2,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,平面平面 , ,

(1)證明:在線段上存在一點,使得平面;

(2)若,在(1)的條件下,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=ex﹣ax(a∈R),e為自然對數(shù)的底數(shù).
(1)若a=1時,求曲線y=f(x)在x=0處的切線方程;
(2)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“莞馬”活動中的α機器人一度成為新聞熱點,為檢測其質(zhì)量,從一生產(chǎn)流水線上抽取20件該產(chǎn)品,其中合格產(chǎn)品有15件,不合格的產(chǎn)品有5件.
(1)現(xiàn)從這20件產(chǎn)品中任意抽取2件,記不合格的產(chǎn)品數(shù)為X,求X的分布列及數(shù)學期望;
(2)用頻率估計概率,現(xiàn)從流水線中任意抽取三個機器人,記ξ為合格機器人與不合格機器人的件數(shù)差的絕對值,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得2分;方案乙的中獎率為 ,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,曲線是以坐標原點為頂點, 軸為對稱軸的拋物線,且焦點在軸正半軸上,圓.過焦點且與軸平行的直線與拋物線交于兩點,且

(1)求拋物線的標準方程;

(2)直線且與拋物線和圓依次交于且直線的斜率,求的取值范圍.

查看答案和解析>>

同步練習冊答案