14.設(shè)a≠0,n是大于1的自然數(shù),${({1+\frac{x}{a}})^n}$的展開式為a0+a1x+a2x2+…+anxn.若a1=3,a2=4,則a=3.

分析 利用二項(xiàng)式定理展開式,比較系數(shù)即可得出.

解答 解:${({1+\frac{x}{a}})^n}$=1+${∁}_{n}^{1}×\frac{x}{a}$+${∁}_{n}^{2}(\frac{x}{a})^{2}$+…=a0+a1x+a2x2+…+anxn.a(chǎn)1=3,a2=4,
∴${∁}_{n}^{1}×\frac{1}{a}$=3,${∁}_{n}^{2}(\frac{1}{a})^{2}$=4,a≠0.
解得a=3,n=9.
故答案為:3.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an•log2an,其前n項(xiàng)和為Sn,若(n-1)2≤m(Sn-n-1)對(duì)于n≥2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.閱讀下面的一段文字,并解決后面的問題:
我們可以從函數(shù)的角度來研究方程的解的個(gè)數(shù)的情況,例如,研究方程2x3-3x2-6=0的解的情況:因?yàn)榉匠?x3-3x2-6=0的同解方程有x3=$\frac{3}{2}{x^2}$+3,2x-3=$\frac{6}{x^2}$等多種形式,所以,我們既可以選用函數(shù)y=x3,y=$\frac{3}{2}{x^2}$+3,也可以選用函數(shù)y=2x-3,y=$\frac{6}{x^2}$,通過研究?jī)珊瘮?shù)圖象的位置關(guān)系來研究方程的解的個(gè)數(shù)情況.因?yàn)楹瘮?shù)的選擇,往往決定了后續(xù)研究過程的難易程度,所以從函數(shù)的角度來研究方程的解的情況,首先要注意函數(shù)的選擇.
請(qǐng)選擇合適的函數(shù)來研究該方程$\frac{1}{x}$=$\frac{ax+b}{e^x}$的解的個(gè)數(shù)的情況,記k為該方程的解的個(gè)數(shù).請(qǐng)寫出k的所有可能取值,并對(duì)k的每一個(gè)取值,分別指出你所選用的函數(shù),畫出相應(yīng)圖象(不需求出a,b的數(shù)值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=1,且滿足:2Sn=an+1-1,則a3+a4+a5=117.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點(diǎn)M的柱坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$,3),點(diǎn)N的球坐標(biāo)為(2,$\frac{π}{4}$,$\frac{π}{2}$),求線段MN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列{an}的首項(xiàng)a1=2,且(n+1)an=nan+1,則a3的值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{xlnx}{x-1}$.
(1)求曲線f(x)在點(diǎn)(e,f(e))(e為自然對(duì)數(shù)的底數(shù))處的切線方程;
(2)求證:$\frac{\root{2016}{2015}}{\root{2015}{2016}}$>$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{ax+2,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$,對(duì)于任意的實(shí)數(shù)x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則實(shí)數(shù)a的取值范圍為(  )
A.a<0B.a≤0C.a≤-$\frac{11}{8}$D.a<-$\frac{11}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知y=f(x)是定義在R上的奇函數(shù),在(0,+∞)是增函數(shù),且f(2)=0,則滿足f(x-1)<0的x的范圍是(-∞,-1)∪(1,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案