【題目】如圖,在三棱錐中,平面平面,為等邊三角形,

,分別為,的中點.

(I)求證:平面

(II)求證:平面平面;

(III)求三棱錐的體積.

【答案】(I)詳見解析(II)詳見解析(III)

【解析】

試題分析:)利用三角形的中位線得出OMVB,利用線面平行的判定定理證明VB平面MOC;()證明OC平面VAB,即可證明平面MOC平面VAB;()利用等體積法求三棱錐A-MOC的體積即可

試題解析:)證明:O,M分別為AB,VA的中點,

OMVB,

VB平面MOC,OM平面MOC,

VB平面MOC;

)證明:AC=BC,O為AB的中點,

OCAB,

平面VAB平面ABC,平面ABC平面VAB=AB,且OC平面ABC,

OC平面VAB,

OC平面MOC,

平面MOC平面VAB

)在等腰直角三角形中,,

所以.

所以等邊三角形的面積.

又因為平面

所以三棱錐的體積等于.

又因為三棱錐的體積與三棱錐的體積相等,

所以三棱錐的體積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解高三年級學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分別直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間的有8人.

I)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間的人數(shù);

II)從甲、乙兩個班每天平均學(xué)習(xí)時間大于10個小時的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ab都是非零向量,且ab不共線.

(1求證:A,B,D三點共線;

(2) 若kaba+kb共線,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為斜邊的等腰直角三角形與等邊三角形所在平面互相垂直, 且點滿足.

(1)求證:平面平面;

(2)求平面 與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知|a|4|b|8,ab的夾角是120°.

(1) 計算:① |ab|,② |4a2b|


(2) 當(dāng)k為何值時,(a2b)⊥(kab)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙依次有放回地隨機抽取1個小球,取到小球的編號分別為.在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,則甲、乙兩人成為“好朋友”的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人種植一種經(jīng)濟(jì)作物,根據(jù)以往的年產(chǎn)量數(shù)據(jù),得到年產(chǎn)量頻率分布直方圖如圖所示,以各區(qū)間中點值作為該區(qū)間的年產(chǎn)量,得到平均年產(chǎn)量為455,已知當(dāng)年產(chǎn)量低于350時,單位售價為20元/,若當(dāng)年產(chǎn)量不低于350而低于550時,單位售價為15元/,當(dāng)年產(chǎn)量不低于550時,單位售價為10元/.

1求圖中的值;

2試估計年銷售額大于5000元小于6000元的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關(guān),醫(yī)院隨機對入院的60人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:

(1)請將列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽9人,其中女性抽幾人?

患三高疾病

不患三高疾病

合計

6

30

合計

36

(2)為了研究三高疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明你有多大把握認(rèn)為患三高疾病與性別有關(guān).

下列的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

同步練習(xí)冊答案