【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列{an}同時滿足下列條件:
①a1=m(mN*);②ann-1(n≥2);③n是a1+a2+‥+an的因數(shù)(n ≥1).
(Ⅰ)當(dāng)m=5時,寫出數(shù)列{an}的前五項(xiàng);
(Ⅱ)若數(shù)列{an}的前三項(xiàng)互不相等,且n≥3時,an為常數(shù),求m的值;
(Ⅲ)求證:對任意正整數(shù)m,存在正整數(shù)M,使得n≥M時,an為常數(shù).
【答案】(Ⅰ);(Ⅱ);(Ⅲ)證明見詳解.
【解析】
(Ⅰ)根據(jù)題意,即可由題意求得結(jié)果;
(Ⅱ)對的取值進(jìn)行分類討論,即可容易求得結(jié)果;
(Ⅲ)根據(jù)已知條件,結(jié)合題意,利用之間的關(guān)系,即可進(jìn)行證明.
(Ⅰ)當(dāng)時,,
,且是的因數(shù),故可得;
,且是的因數(shù),故可得;
,且是的因數(shù),故可得;
,且是的因數(shù),故可得;
綜上可得:.
(Ⅱ)(1)當(dāng)時,
若,則,
且對,都為整數(shù),故;
若,則,
且對,都為整數(shù),故;
(2)當(dāng)時,
若,則,
且對,都為整數(shù),故,不符合題意;
若,則,
且對,都為整數(shù),故;
綜上所述:的值為.
(Ⅲ)證明:對于,令
則
又對每一個都是正整數(shù),
故其中至多出現(xiàn)個.
故存在正整數(shù),當(dāng)時,必有
當(dāng)時,則
故
則
有題設(shè)可知
,
又以及均為整數(shù),
都為常數(shù).
故可得為常數(shù).
故對任意正整數(shù)m,存在正整數(shù)M,使得n≥M時,an為常數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)求C1的極坐標(biāo)方程;
(2)若C1與曲線C2:ρ=2sinθ交于A,B兩點(diǎn),求|OA||OB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:
(I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;
(II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說法:
①圖(2)對應(yīng)的方案是:提高票價,并提高成本;
②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;
③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;
④圖(3)對應(yīng)的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說法:
①圖(2)對應(yīng)的方案是:提高票價,并提高成本;
②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;
③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;
④圖(3)對應(yīng)的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有兩個不同的零點(diǎn),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌電腦體驗(yàn)店預(yù)計全年購入臺電腦,已知該品牌電腦的進(jìn)價為元/臺,為節(jié)約資金決定分批購入,若每批都購入(為正整數(shù))臺,且每批需付運(yùn)費(fèi)元,儲存購入的電腦全年所付保管費(fèi)與每批購入電腦的總價值(不含運(yùn)費(fèi))成正比(比例系數(shù)為),若每批購入臺,則全年需付運(yùn)費(fèi)和保管費(fèi)元.
(1)記全年所付運(yùn)費(fèi)和保管費(fèi)之和為元,求關(guān)于的函數(shù).
(2)若要使全年用于支付運(yùn)費(fèi)和保管費(fèi)的資金最少,則每批應(yīng)購入電腦多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對手機(jī)流量的需求越來越大.某通信公司為了更好地滿足消費(fèi)者對流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了人口規(guī)模相當(dāng)?shù)?/span>個城市采用不同的定價方案作為試點(diǎn),經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價: (單位:元/月)和購買總?cè)藬?shù)(單位:萬人)的關(guān)系如表:
定價x(元/月) | 20 | 30 | 50 | 60 |
年輕人(40歲以下) | 10 | 15 | 7 | 8 |
中老年人(40歲以及40歲以上) | 20 | 15 | 3 | 2 |
購買總?cè)藬?shù)y(萬人) | 30 | 30 | 10 | 10 |
(Ⅰ)根據(jù)表中的數(shù)據(jù),請用線性回歸模型擬合與的關(guān)系,求出關(guān)于的回歸方程;并估計元/月的流量包將有多少人購買?
(Ⅱ)若把元/月以下(不包括元)的流量包稱為低價流量包,元以上(包括元)的流量包稱為高價流量包,試運(yùn)用獨(dú)立性檢驗(yàn)知識,填寫下面列聯(lián),并通過計算說明是否能在犯錯誤的概率不超過的前提下,認(rèn)為購買人的年齡大小與流量包價格高低有關(guān)?
定價x(元/月) | 小于50元 | 大于或等于50元 | 總計 |
年輕人(40歲以下) | |||
中老年人(40歲以及40歲以上) | |||
總計 |
參考公式:其中
其中
參考數(shù)據(jù):
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中).
(1)當(dāng)時,求函數(shù)的圖像在處的切線方程;
(2)若恒成立,求的取值范圍;
(3)設(shè),且函數(shù)有極大值點(diǎn),求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com