13.四棱錐P-ABCD中,PA⊥底面ABCDD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°,M是CD上的點(diǎn),Q點(diǎn)是PC上的點(diǎn),平面BMQ∥平面PAD.
(1)求$\frac{QM}{PD}$;
(2)求直線BC與平面PCD所成角.

分析 (1)推導(dǎo)出四邊形ABMD是平行四邊形,從而M是CD中點(diǎn),由此能求出$\frac{QM}{PD}$=$\frac{1}{2}$.
(2)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線BC與平面PCD所成.

解答 解:(1)∵PA⊥底面ABCDD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°,
M是CD上的點(diǎn),Q點(diǎn)是PC上的點(diǎn),平面BMQ∥平面PAD,
∴BM∥AD,∴四邊形ABMD是平行四邊形,
∴AB=DM,∴M是CD中點(diǎn),
∴MQ∥PD,∴$\frac{QM}{PD}$=$\frac{1}{2}$.
(2)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
設(shè)PA=AB=AD=$\frac{1}{2}$CD=1,
則P(0,0,1),B(1,0,0),C(2,1,0),D(0,1,0),
$\overrightarrow{BC}$=(1,1,0),$\overrightarrow{PC}$=(2,1,-1),$\overrightarrow{PD}$=(0,1,-1),
設(shè)平面PCD的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PC}=2x+y-z=0}\\{\overrightarrow{n}•\overrightarrow{PD}=y-z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
設(shè)直線BC與平面PCD所成角為θ,
則sinθ=$\frac{|\overrightarrow{BC}•\overrightarrow{n}|}{|\overrightarrow{BC}|•|\overrightarrow{n}|}$=$\frac{1}{2}$,θ=30°,
∴直線BC與平面PCD所成角為30°.

點(diǎn)評(píng) 本題考查線段比值的求法,考查線面角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)圖象如圖所示,則下列關(guān)于函數(shù) f (x)的說(shuō)法中正確的是(  )
A.對(duì)稱(chēng)軸方程是x=$\frac{π}{6}$+kπ(k∈Z)B.對(duì)稱(chēng)中心坐標(biāo)是($\frac{π}{3}$+kπ,0)(k∈Z)
C.在區(qū)間(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增D.在區(qū)間(-π,-$\frac{2π}{3}$)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.長(zhǎng)方體的長(zhǎng)、寬、高分別為2、2、2$\sqrt{2}$,則其外接球的表面積為(  )
A.64πB.32πC.16πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x+a}{x-3}$的圖象過(guò)點(diǎn)(0,-1).
(1)求實(shí)數(shù)a的值;
(2)若f(x)=m+$\frac{n}{x-3}$(m,n是常數(shù)),求實(shí)數(shù)m,n的值;
(3)用定義法證明:函數(shù)f(x)在(3,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{2\sqrt{2}}{3}$,且M,N是橢圓C上相異的兩點(diǎn),若點(diǎn)P(2,0)滿足PM⊥PN,則$\overrightarrow{PM}$•$\overrightarrow{MN}$的取值范圍為( 。
A.[-25,-$\frac{1}{2}$]B.[-5,-$\frac{1}{2}$]C.[-25,-1]D.[-5,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是BB1,DD1的中點(diǎn).
( I)證明:平面AED∥平面B1FC1;
( II)在AE上求一點(diǎn)M,使得A1M⊥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AC=AA1,∠CAB=90°,M、N分別是AA1和AC的中點(diǎn).
(1)求證:MN⊥BC1
(2)求直線MN與平面BCC1B1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.i是虛數(shù)單位,復(fù)數(shù)z=${({\frac{3-i}{1+i}})^2}$,則復(fù)數(shù)z的共軛復(fù)數(shù)表示的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知tanα=2,tanβ=3,則tan(α+β)=(  )
A.1B.-1C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案