【題目】已知橢圓以坐標原點為中心,焦點在軸上,焦距為2,且經(jīng)過點.
(1)求橢圓的方程;
(2)設(shè)點,點為曲線上任一點,求點到點距離的最大值;
(3)在(2)的條件下,當時,設(shè)的面積為(O是坐標原點,Q是曲線C上橫坐標為a的點),以為邊長的正方形的面積為,若正數(shù)滿足,問是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.
【答案】(1)(2) (3) m存在最小值
【解析】
(1)根據(jù)已知求出a,b,c值,可得橢圓C的方程;(2)設(shè)P(x,y),則y2=2﹣2x2,利用兩點間的距離公式可得|PA|2=(x﹣a)2+y2=(x﹣a)2+2﹣2x2,轉(zhuǎn)為二次函數(shù)求最值問題;(3)由題意分別表示出S1及S2,對不等式S1≤mS2進行變量分離得到,令,通過換元t=a2+1轉(zhuǎn)為二次函數(shù)求最值問題.
(1)由題意知c=1,又過點(1,0)所以b=1,故a=,則橢圓方程為.
(2)設(shè),則
令,
所以當時在[-1,1]上是減函數(shù),
;
當時,在上是增函數(shù),
在上是減函數(shù),則;
當時,在上是增函數(shù);
所以.
(3)當時,,
.
若正數(shù)m滿足條件,
則,即,
,令,
設(shè),則,.
,
所以,當,即時,
即,.所以,m存在最小值
【另解】
由,得,
而
當且僅當,
即,等號成立,∴
從而,故m的最小值為
科目:高中數(shù)學 來源: 題型:
【題目】對定義在上的函數(shù)和常數(shù),,若恒成立,則稱為函數(shù)的一個“凱森數(shù)對”.
(1)若是的一個“凱森數(shù)對”,且,求;
(2)已知函數(shù)與的定義域都為,問它們是否存在“凱森數(shù)對”?分別給出判斷并說明理由;
(3)若是的一個“凱森數(shù)對”,且當時,,求在區(qū)間上的不動點個數(shù)(函數(shù)的不動點即為方程的解).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間A為函數(shù)的一個“可等域區(qū)間”.給出下列四個函數(shù):①;②;③;④.其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】歐拉公式(為虛數(shù)單位,,為自然底數(shù))是由瑞士著名數(shù)學家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里占有非重要的地位,被譽為“數(shù)學中的天橋”,根據(jù)歐拉公式可知,表示的復(fù)數(shù)在復(fù)平面中位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知ABCD為梯形,AB∥CD,CD=2AB,M為線段PC上一點.
(1)設(shè)平面PAB∩平面PDC=l,證明:AB∥l;
(2)在棱PC上是否存在點M,使得PA∥平面MBD,若存在,請確定點M的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市堅持農(nóng)業(yè)與旅游融合發(fā)展,著力做好旅游各要素,完善旅游業(yè)態(tài),提升旅游接待能力.為了給游客提供更好的服務(wù),旅游部門需要了解游客人數(shù)的變化規(guī)律,收集并整理了年月至年月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為等腰梯形, ∥, , ,四邊形為正方形,平面平面.
(Ⅰ)若點是棱的中點,求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com