7.北京、張家港2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估.該商品原來(lái)每件售價(jià)為25元,年銷售8萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到x元.公司擬投入$\frac{1}{6}({{x^2}-600})$萬(wàn)作為技改費(fèi)用,投入(50+2x)萬(wàn)元作為宣傳費(fèi)用.試問(wèn):當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

分析 (1)設(shè)每件定價(jià)為t元,則(8-(t-25)×0.2)•t≥25×8,由二次不等式的解法即可得到;
(2)由題得當(dāng)x>25時(shí):$ax≥25×8+\frac{1}{6}({{x^2}-600})+({50+2x})$有解,由分離參數(shù)和基本不等式,可得最值,即可得到a的范圍.

解答 解:(1)設(shè)每件定價(jià)為t元,
則(8-(t-25)×0.2)•t≥25×8,
整理得t2-65t+1000≤0?25≤t≤40,
∴要滿足條件,每件定價(jià)最多為40元;                   
(2)由題得當(dāng)x>25時(shí):$ax≥25×8+\frac{1}{6}({{x^2}-600})+({50+2x})$有解,
即:$a≥\frac{150}{x}+\frac{1}{6}x+2,x>25$有解.
又$\frac{150}{x}+\frac{1}{6}x≥2\sqrt{\frac{150}{x}•\frac{x}{6}}=10$,
當(dāng)且僅當(dāng)x=30>25時(shí)取等號(hào),
∴a≥12.
即改革后銷售量至少達(dá)到12萬(wàn)件,才滿足條件,此時(shí)定價(jià)為30元/件.

點(diǎn)評(píng) 本題考查二次不等式的解法和不等式有解的條件,主要考查基本不等式的運(yùn)用:求最值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,a1a9=10,則a5的值為( 。
A.5B.±$\sqrt{10}$C.$\sqrt{10}$D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x-$\frac{a}{x}$+b(2-lnx)在x=1處的切線的斜率為零.
(Ⅰ)試用含a的代數(shù)式表示b;
(Ⅱ)若函數(shù)f(x)在區(qū)間[2,3]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅲ)是否存在實(shí)數(shù)a,使得函數(shù)y=f(x)圖象與直線y=2a有兩個(gè)交點(diǎn)?若存在,求出所有a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如表是某廠生產(chǎn)某產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)標(biāo)準(zhǔn)煤的幾組統(tǒng)計(jì)數(shù)據(jù):
x34567
y5.88.29.712.214.1
(1)請(qǐng)根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān),并估計(jì)產(chǎn)量為20噸時(shí),生產(chǎn)能耗為多少噸標(biāo)準(zhǔn)煤?
參考數(shù)值:3×5.8+4×8.2+5×9.7+6×12.2+7×14.1=270.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$y=sin({\frac{1}{2}x+\frac{π}{3}}),x∈[{0,π}]$
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=sinx,g(x)=ex•f′(x),(e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)g(x)在[0,$\frac{π}{2}$]上的單調(diào)區(qū)間;
(2)若對(duì)任意x∈[-$\frac{π}{2}$,0],不等式g(x)≥x•f(x)+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.化簡(jiǎn):$\frac{{cos({2π-α})•tan({\frac{π}{2}+α})•tan({α-π})}}{{cos({\frac{3π}{2}+α})•cot({3π-α})}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.tan10°tan20°+$\sqrt{3}$(tan10°+tan20°)=(  )
A.-1B.$\sqrt{3}$C.1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)集合A={1,3,4},B={1,2,3,5},則A∪B中元素的個(gè)數(shù)為(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案