14.設(shè)x>0,y>0,A=$\frac{x+y}{1+x+y}$,B=$\frac{x}{1+x}+\frac{y}{1+y}$,則A與B的大小關(guān)系為(  )
A.A>BB.A≥BC.A<BD.A≤B

分析 通過A、B分離常數(shù)1,直接利用放縮法推出所求結(jié)果.

解答 解:A=$\frac{x+y}{1+x+y}$=1-$\frac{1}{1+x+y}$,
B=$\frac{x}{1+x}+\frac{y}{1+y}$=$\frac{x+2xy+y}{(1+x)(1+y)}$=1-$\frac{1-xy}{1+x+y+xy}$,
∵$\frac{1-xy}{1+x+y+xy}$<$\frac{1}{1+x+y+xy}$<$\frac{1}{1+x+y}$,
∴-$\frac{1}{1+x+y}$<-$\frac{1-xy}{1+x+y+xy}$,
∴A<B,
故選:C.

點(diǎn)評(píng) 本題考查了不等式大小比較的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S6=36,Sn=324,Sn-6=144,(n>6,n∈N*)則n的值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知$\overrightarrow{OP}$=(2,1),$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),設(shè)Z是直線OP上的一動(dòng)點(diǎn).
(1)求使$\overrightarrow{ZA}$•$\overrightarrow{ZB}$取最小值時(shí)的$\overrightarrow{OZ}$;
(2)對(duì)(1)中求出的點(diǎn)Z,求cos∠AZB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=a-$\frac{1}{{2}^{x}+1}$,(x∈R).且f(x)為奇函數(shù),
(1)求a的值;
(2)若函數(shù)f(x)在區(qū)間(-1,1)上為增函數(shù),且滿足f(x-1)+f(x)<0,求x 的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.己知圓O:x2+y2=1和圓C:x2+y2-2x-4y+m=0相交于A、B兩點(diǎn),若|AB|=$\frac{{4\sqrt{5}}}{5}$,則m的值是1或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}滿足${a_1}=1,{a_{n+1}}=\frac{1}{2}{a_n}+1(n∈N*)$,通過計(jì)算a1,a2,a3,a4可猜想an=$\frac{{{2^n}-1}}{{{2^{n-1}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(其中n∈N
(I)求a0及Sn=a1+a2+a3+…+an;
(Ⅱ)比較Sn與(n-2)2n+5的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知B,C是球O的一個(gè)小圓O1上的兩點(diǎn),且BC=2$\sqrt{3}$,∠BOC=$\frac{π}{2}$,∠BO1C=$\frac{2π}{3}$,則三棱錐O-O1BC的體積為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列命題中正確的序號(hào)是②③
①平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,則$\overrightarrow{a}$在$\overrightarrow$上的投影為$\sqrt{3}$.
②有一底面積半徑為1,高為2的圓柱,點(diǎn)O為這個(gè)圓柱底面的圓心,在這個(gè)圓柱內(nèi)隨機(jī)抽取一點(diǎn)P,則點(diǎn)P到O點(diǎn)的距離大于1的概率為$\frac{2}{3}$.
③命題:“?x∈(0,+∞),不等式cosx>1-$\frac{1}{2}$x2恒成立”是真命題.
④在約束條件$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{x+y≥1}\end{array}\right.$下,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則$\frac{ab}{2a+b}$的最大值等于$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案