【題目】為了普及環(huán)保知識,增強環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
(Ⅰ)根據題目條件完成下面2×2列聯表,并據此判斷是否有99%的把握認為環(huán)保知識成績優(yōu)秀與學生的文理分類有關.
優(yōu)秀人數 | 非優(yōu)秀人數 | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(Ⅱ)現已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設隨機變量X表示A,B,C三人中獲得優(yōu)秀的人數,求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.
(1)過B作平面BFG∥平面MNC,平面BFG與CD、DM分別交于F、G,求AF與平面MNC所成角的正弦值;
(2)E為直線MN上一點,且平面ADE⊥平面MNC,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在邊長為1的正方形內作兩個互相外切的圓,同時每一個圓又與正方形的兩相鄰邊相切,當一個圓為正方形內切圓時半徑最大,另一圓半徑最小,記其中一個圓的半徑為x,兩圓的面積之和為S,將S表示為x的函數。
求:(1)函數的解析式;
(2)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數滿足,且的最小值是.
(1)求的解析式;
(2)若關于的方程在區(qū)間上有唯一實數根,求實數的取值范圍;
(3)函數,對任意都有恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大西洋鮭魚每年都要逆流而上,游回產地產卵,研究鮭魚的科學家發(fā)現鮭魚的游速(單位: )與其耗氧量單位數之間的關系可以表示為函數,其中為常數,已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.
(1)求出游速與其耗氧量單位數之間的函數解析式;
(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為 (t為參數).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C:ρ=2 cos(θ﹣ ).
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ) 求曲線C上的點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)滿足:對于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),則稱函數f (x)為“T函數”.
(I)試判斷函數f1(x)=x2與f2(x)=lg(x+1)是否是“T函數”,并說明理由;
(Ⅱ)設f (x)為“T函數”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證:f (x0) =x0;
(Ⅲ)試寫出一個“T函數”f(x),滿足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的個數最少.(只需寫出結論)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com