A. | ($\frac{1}{4}$,+∞) | B. | (-∞,$\frac{1}{4}$) | C. | (0,$\frac{1}{4}$) | D. | (-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞) |
分析 f(x)是定義在R上的奇函數(shù),可得:f(-x)=-f(x).對(duì)任意正實(shí)數(shù)x滿足xf′(x)>2f(-x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函數(shù)g(x)在(0,+∞)上單調(diào)遞增.即可得出.
解答 解:∵f(x)是定義在R上的奇函數(shù),∴f(-x)=-f(x).
對(duì)任意正實(shí)數(shù)x滿足xf′(x)>2f(-x),
∴xf′(x)+2f(x)>0,
∵g(x)=x2f(x),
∴g′(x)=2xf(x)+x2f′(x)>0.
∴函數(shù)g(x)在(0,+∞)上單調(diào)遞增.
又g(0)=0,g(-x)=x2f(-x)=-g(x),
∴函數(shù)g(x)是R上的奇函數(shù),
∴g(x)是R上的增函數(shù).
由不等式g(x)<g(1-3x),
∴x<1-3x,
解得$x<\frac{1}{4}$.
∴不等式g(x)<g(1-3x)的解集為:$\{x|x<\frac{1}{4}\}$.
故選:B.
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性與單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com