12.已知點A(-1,2)B(3,4),求直線AB的方程.

分析 將A、B的坐標代入直線的兩點式公式即可得出.

解答 解:由兩點式可得:$\frac{y-4}{2-4}$=$\frac{x-3}{-1-3}$,
整理得:x-2y+5=0.

點評 本題考查了直線的兩點式公式,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知sinα-cosα=$\frac{17}{13}$,α∈(0,π),求sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.直線xsin$\frac{π}{5}$+ycos$\frac{π}{5}$=0的傾斜角是$\frac{4π}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.直線在x軸和y軸上的截距分別為2和-2,求此直線的斜率及傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若直線經(jīng)過點(0,3),且斜率為-2,則直線的方程是2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知定義在R上的奇函數(shù)f(x),其導函數(shù)為f′(x),對任意正實數(shù)x滿足xf′(x)>2f(-x),若g(x)=x2f(x),則不等式g(x)<g(1-3x)的解集是( 。
A.($\frac{1}{4}$,+∞)B.(-∞,$\frac{1}{4}$)C.(0,$\frac{1}{4}$)D.(-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.數(shù)列{an}中,a1=36,an+1-an=2n,求通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設銳角△ABC的內(nèi)角A,B,C的對應邊分別為a,b,c;已知a=2bsinA,則$\frac{a}{2c}$的取值范圍為( 。
A.$(0,\frac{{\sqrt{3}}}{3})$B.$(0,\frac{{\sqrt{3}}}{5})$C.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$D.$(\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=ex+e-x(其中e是自然對數(shù)的底數(shù)),若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,則實數(shù)m的取值范圍是(-∞,-$\frac{1}{3}$].

查看答案和解析>>

同步練習冊答案