分析 (1)由題意可得,直線l的斜率存在,用點(diǎn)斜式求得直線l的方程,根據(jù)圓心到直線的距離等于半徑求得k的值,可得滿足條件的k的范圍.
(2)由題意可得,經(jīng)過點(diǎn)M、N、A的直線方程為y=kx+1,根據(jù)直線和圓相交的弦長公式進(jìn)行求解.
解答 (1)由題意可得,直線l的斜率存在,
設(shè)過點(diǎn)A(0,1)的直線方程:y=kx+1,即:kx-y+1=0.
由已知可得圓C的圓心C的坐標(biāo)(2,3),半徑R=1.
故由$\frac{|2k-3+1|}{\sqrt{{k}^{2}+1}}$<1,
故當(dāng)$\frac{4-\sqrt{7}}{3}$<k<$\frac{4+\sqrt{7}}{3}$,過點(diǎn)A(0,1)的直線與圓C:(x-2)2+(y-3)2=1相交于M,N兩點(diǎn).
(2)設(shè)M(x1,y1);N(x2,y2),
由題意可得,經(jīng)過點(diǎn)M、N、A的直線方程為y=kx+1,代入圓C的方程(x-2)2+(y-3)2=1,
可得 (1+k2)x2-4(k+1)x+7=0,
∴x1+x2=$\frac{4(1+k)}{1+{k}^{2}}$,x1•x2=$\frac{7}{1+{k}^{2}}$,
∴y1•y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1
=$\frac{7}{1+{k}^{2}}$•k2+k•$\frac{4(1+k)}{1+{k}^{2}}$+1=$\frac{12{k}^{2}+4k+1}{1+{k}^{2}}$,
由$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1•x2+y1•y2=$\frac{12{k}^{2}+4k+8}{1+{k}^{2}}$=12,解得 k=1,
故直線l的方程為 y=x+1,即 x-y+1=0.
圓心C在直線l上,MN長即為圓的直徑.
所以|MN|=2.
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,以及直線和圓相交的弦長公式的計(jì)算,考查學(xué)生的計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x≤0} | B. | {x|-1≤x≤1} | C. | {x|-1<x≤1} | D. | {x|-1<x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 93 | B. | 123 | C. | 137 | D. | 167 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com