分析 設(shè)PA=1,由已知求出PB=2,AB=$\sqrt{3}$,AC=$\frac{\sqrt{3}}{3}$,CD=$\frac{\sqrt{2}}{\sqrt{3}}$,從而得到AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=1,由此能求出PD與平面ABC所成角的大。
解答 解:設(shè)PA=1,
∵在△ABC中,∠ACB=90°,D為BC的中點,PA⊥平面ABC,如果PB,PC與平面ABC所成角分別為30°、60°,
∴∠ABP=30°,∠ACP=60°,∠ADP是PD與平面ABC所成角,
∴PB=2,AB=$\sqrt{4-1}$=$\sqrt{3}$,AC=1×cot60°=$\frac{\sqrt{3}}{3}$,CD=$\frac{1}{2}BC$=$\frac{1}{2}\sqrt{3-\frac{1}{3}}$=$\frac{\sqrt{2}}{\sqrt{3}}$,
∴AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\sqrt{\frac{1}{3}+\frac{2}{3}}$=1,
∴tan$∠ADP=\frac{PA}{AD}$=1,
∴∠ADP=45°.
∴PD與平面ABC所成角的大小為45°.
故答案為:45°.
點評 本題考查線面角的大小的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
壽命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
個 數(shù) | 20 | 30 | 80 | 40 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一i | B. | i | C. | $\frac{3}{5}$-$\frac{4}{5}$i | D. | $\frac{3}{5}$+$\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (-∞,1) | C. | (-1,1) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ② | B. | ③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com