3.已知A為△ABC的最小內(nèi)角,若向量$\overrightarrow{a}$=(cosA,1),$\overrightarrow$=(2sin(A+$\frac{π}{6}$),1),則$\overrightarrow{a}$•$\overrightarrow$的取值范圍是(  )
A.[-$\frac{1}{2}$,$\frac{5}{2}$]B.(-$\frac{1}{2}$,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.(2,$\frac{5}{2}$]

分析 由題意可得A≤$\frac{π}{3}$,化簡(jiǎn)$\overrightarrow{a}$•$\overrightarrow$ 為sin(2A+$\frac{π}{6}$)+$\frac{3}{2}$,再根據(jù)2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$],利用正弦函數(shù)的定義域和值域,求得$\overrightarrow{a}•\overrightarrow$的范圍.

解答 解:∵A為△ABC的最小內(nèi)角,∴A≤$\frac{π}{3}$,
則$\overrightarrow{a}$•$\overrightarrow$=2sin(A+$\frac{π}{6}$)cosA+1=2(sinA•$\frac{\sqrt{3}}{2}$+cosA•$\frac{1}{2}$)cosA+1=$\frac{\sqrt{3}}{2}$•2sinAcosA+cos2A+1
=$\frac{\sqrt{3}}{2}$sin2A+$\frac{1+cos2A}{2}$+1=sin(2A+$\frac{π}{6}$)+$\frac{3}{2}$,
∵2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$],∴sin(2A+$\frac{π}{6}$)∈[$\frac{1}{2}$,1],∴$\overrightarrow{a}•\overrightarrow$=sin(2A+$\frac{π}{6}$)+$\frac{3}{2}$∈[2,$\frac{5}{2}$],
故選:C.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積公式,三角恒等變換,正弦函數(shù)的定義域和值域,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.當(dāng)x∈[-1,+∞)時(shí),不等式x3-ax2-4x+8≥0恒成立,則a的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosB-bcosA=$\frac{1}{3}$c,cosC=-$\frac{\sqrt{10}}{10}$,則tanB的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.△ABC的三內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別是a,b,c,且它們邊上的高分別為$\frac{1}{13}$,$\frac{1}{5}$,$\frac{1}{11}$,則該三角形為( 。
A.銳角三角形B.直角三角形
C.鈍角三角形D.不存在這樣的三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.從5個(gè)男生和3個(gè)女生中選4人分別擔(dān)當(dāng)4個(gè)學(xué)科的課代表,要求至少有2個(gè)女生,則不同的選法種數(shù)為35種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=$\frac{x}{x+1}$+$\frac{x+1}{x+2}$+$\frac{x+2}{x+3}$對(duì)稱中心為( 。
A.(-4,6)B.(-2,3)C.(-4,3)D.(-2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在△ABC中,已知CA=2,CB=6,∠ACB=60°,又點(diǎn)O滿足$\overrightarrow{CO}$=λ($\frac{\overrightarrow{CA}}{2}$+$\frac{\overrightarrow{CB}}{6}$),λ>0,$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,m,n∈R,且-$\frac{1}{4}$≤n≤-$\frac{1}{20}$,則|$\overrightarrow{OC}$|的取值范圍是[$\frac{\sqrt{3}}{4}$,$\frac{3\sqrt{3}}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-3y+2≥0}\\{x+y-6≤0}\\{y≥1}\end{array}\right.$,若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無(wú)數(shù)個(gè),則$\frac{y}{x-a}$的取值范圍是[$\frac{1}{8}$,$\frac{2}{7}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知全集U=R,若A={y|y=2x,x≤0},則∁RA=( 。
A.(-∞,0]∪(1,+∞)B.(1,+∞)C.(-∞,0)∪[1,+∞)D.(-∞,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案