14.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB-bcosA=$\frac{1}{3}$c,cosC=-$\frac{\sqrt{10}}{10}$,則tanB的值為$\frac{1}{2}$.

分析 acosB-bcosA=$\frac{1}{3}$c,利用正弦定理、和差公式可得:tanA=2tanB.由cosC=-$\frac{\sqrt{10}}{10}$,C∈(0,π),可得sinC=$\frac{3\sqrt{10}}{10}$,tanC=-3.利用-3=tanC=-tan(A+B),代入解出即可得出.

解答 解:∵acosB-bcosA=$\frac{1}{3}$c,
∴sinAcosB-sinBcosA=$\frac{1}{3}$sinC=$\frac{1}{3}$sin(A+B)=$\frac{1}{3}$sinAcosB+$\frac{1}{3}$cosAsinB,
∴tanA=2tanB.
∵cosC=-$\frac{\sqrt{10}}{10}$,C∈(0,π),
∴sinC=$\frac{3\sqrt{10}}{10}$,tanC=-3.
∴-3=tanC=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$=-$\frac{3tanB}{1-2ta{n}^{2}B}$,
化為:2tan2B+tanB-1=0,B為銳角,
解得tanB=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查了三角函數(shù)求值、和差公式、正弦定理、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|-2<x<3},B={y|y=|x|-3,x∈A},則A∩B等于(  )
A.{x|0<x<3}B.{x|-1<x<0}C.{x|-2<x<0}D.{x|-3<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖程序中,若輸入x=-2,則輸出y的值為(  )
A.1B.13C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.將下列各題迸行直角坐標(biāo)方程與極坐標(biāo)方程的互化
(1)y2+x2-2x-1=0;
(2)ρ=$\frac{1}{2-cosθ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=αcosx+bsinx,其中a、b為實常數(shù),若存在x1,x2,當(dāng)x1-x2≠kπ(k∈z)時,有|f(x1)|+|f(x2)|=0成立,則函數(shù)f(x)的值域為[-$\sqrt{{a}^{2}{+b}^{2}}$,$\sqrt{{a}^{2}{+b}^{2}}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2sin(ωx+φ-$\frac{π}{6}$)(0<φ<π,ω>0))為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為$\frac{π}{2}$.(I)求f($\frac{π}{8}$)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上所有點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將圖象向右平移$\frac{π}{6}$個單位后,得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g2(x+$\frac{π}{6}$)+2mcosx+4=0在x∈(0,$\frac{π}{2}$)有實數(shù)解,求實數(shù)m的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$\overrightarrow{O{F}_{1}}$=(2,2),$\overrightarrow{O{F}_{2}}$=(-2,3)分別表示F1,F(xiàn)2,則|F1+F2|=( 。
A.(0,5)B.25C.2$\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知A為△ABC的最小內(nèi)角,若向量$\overrightarrow{a}$=(cosA,1),$\overrightarrow$=(2sin(A+$\frac{π}{6}$),1),則$\overrightarrow{a}$•$\overrightarrow$的取值范圍是(  )
A.[-$\frac{1}{2}$,$\frac{5}{2}$]B.(-$\frac{1}{2}$,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.(2,$\frac{5}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正方形的中心為G(-1,0)一邊所在直線的方程為x-3y-5=0,求其他三邊所在直線方程.

查看答案和解析>>

同步練習(xí)冊答案